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1 Scope and field of application 2 References

Whenevera measurementof flowrate (discharge)is
madethevalueobtainedfrom the experimentaldata
is simply the best possible estimate of the true
flowrate.In practice,the true flowratemaybe slightly
greateror lessthanthis value.

This International Standard details step by step
proceduresfor the evaluation of uncertainties in
individual flow measurementsarising from both
randomand systematice~rorsandfor thepropagation
of theseerrorsintotheuncertaintyof the testresults.
Theseproceduresenablethefollowing processesto be
effected:

a) Estimation of the accuracy of the test
resultsderivedfrom flowrate measurement

b) Selection of a proper measuringmethod
anddevicesto achievea requiredlevel of
accuracyof flowrate measurement

c) Comparisonof the resultsof measurement

d) Control over the sourcesof errorscontrib-
uting to a totaluncertainty

e) Refinementof the resultsof measurement
asdataaccumulate

ISO 748 Liquid flow measurementin open channels
— velocity areamethods

ISO 772 Liquid flow measurementin open channels
— vocabularyandsymbols

ISO 3534 Statistics— vocabularyandsymbols(1977)

ISO 4006 Measurementof fluid flow in closedcon-
duits — vocabularyandsymbols

ISO 4360 Liquid flow measurementin openchannels
by weirsandflumes— triangularprofile weirs

ISO 5725Precisionof testmethods— determination
of repeatabilityandreproducibilityby inter-laborato-
ry tests

3 Glossary and Notation

3.1 Notation

8

The systematic error, the fixed, or

constantcomponentof thetotal error,3.

Thetotalerror.

NOTE. It is assumedthat the measurementprocess
is carefully controlled andthat all calibrationcorrec-
tions havebeenapplied.

This standarddescribesthe calculationsrequiredin
order to arrive at an estimateof the interval within
which thetrue valueof the flowrate maybe expected
to lie. The principleof thesecalculationsis applicable
to anyflow measurementmethod,whetherthe flow is
in openchannelor in closedconduit.Although this
standardhasbeendraftedtakingmainly into account
the sourcesof error due to the instrumentation,it
shall be emphasizedthat the errors due to the flow
itself (velocity distribution, turbulence,etc...) andto
its effect on the method andon the responseof the
instrument can be of greatimportancewith certain
methodsof flow measurement(see 5.7). Where a
particulardeviceor techniqueis used,somesimplifi-
cationsmaybe possibleor specialreferencemayhave
to be madeto specific sourcesof error not identified
in this Standard.Thereforereferenceshouldbe made
to the “Uncertainty of measurement”clauseof the
appropriateInternationalStandarddealingwith that
deviceor technique.

9

E

B

Random(precision)error

Theestimateof theupperand lower limit
of thesymmetricalsystematicerror,f3.

2B = Vallj au

B+, B The upper and lower limits of a non-
symmetrical systematicerror.

An estimate of the upper limit of an
elemental systematic error. The j
subscriptindicatestheprocess,i.e.

j = 1 calibrationerror,
= 2 dataacquisition
= 3 datareduction

The i subscriptis the numberassignedto
a given elementalsourceof error. If i is
more than a single digit, the commais
usedbetweeni andj.
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bar (~) Themeanvalueof a variable.

C The numberof coefficientsestimatedin
regressionanalysis

Thedifferencebetweenmeasurements

K Calibrationconstant

M Number of redundant instruments or
tests

N Samplesize

The samplecorrelationis an estimateof
the true,unknownpopulationcorrelation
coefficient,p.

U+, U The upper and lower limits of a non-
symmetricaluncertaintyinterval.

U99 = B + t~S~,provides — 99% coverage.
U~D

~B2 +(t95 S~)2, provides 95%

coverage.

Arithmetic meanof thedatavalues;;

i Sampleaverageof measurements

N

~xi
i~1

N

The variance,the squareof the standard
deviation

Populationmean.

S2 An unbiasedestimateof thevariance,a2.

S~ An estimateof theexperimentalstandard
deviationof& = — r2

= Vs~1÷s~2

The estimate of the experimental
standarddeviation from one elemental
source. The subscriptsare the sameas
the elementalsystematicerror limits in
theforegoing.

S=

S~ Estimate of the experimental standard
deviationof the variableY

I ~(X13-X1)2
i~1j=I

Spooled = M(N—1)

Student’sstatisticalparameterat the 95
percentconfidencelevel. The degreesof
freedom,v, of the sampleestimateof the
standarddeviation is neededto obtain
thet value.

Thevalueof x at the i-th datapoint

Xj The j-th independentvariable (in multi-
ple linearregression)

x~ Thevalueof Xj at thei-th datapoint

Thevalueof y predictedby the equation
of thefitted curve.

V Arithmetic meanof the n measurements
of thevariableY.

y~ Thevalueof y at thei-th datapoint

Subscripts

The numberof the error ~ourcewithin
the error category;also,a generalindex.

ADD The additivemodel

RSS Theroot-sum-squaremodel

NOTE — Thesestatistical symbolsare in accor-
dance with 1S03534Statistics — Vocabularyand
Symbols

U95
URSS

9cY~

sij

t
95
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Value of Measured Quantity
+ us

3.2 Glossary

4

Bias Error
Is Unseen
Within Limits

- us

FDA 289822

Mean Measured

True Value of
Quantity (Unknown)

Specific
Confidence Level

Probability Density

Time During Which a Constant
Va’ue of the Quantity Y Is
Being Assessed

Time

Figure 1 —

3.2.1 bias — see 3.2.36 and figure 2.

TrueValue

Average

Figure 2 — Bias
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3.2.2 bias limit

Theestimateof the upper limit of thebias (systemat-
ic) error.

3.2.3 calibration curve

The locus of points obtainedby plotting someindex
of the calibration responseof a flowmeter against
some functionof the flowrate.

3.2.4 confidence interval

The interval within which thetrue valueis expected
to lie,with a specifiedconfidencelevel.

3.2.5 correction

A value which must be addedalgebraicallyto the
indicatedvalue to obtain the correctedresult. It is

numerically the same as a known error, but of
oppositesign.

3.2.6 correlation coefficient

A measureof thelinearinterdependencebetweentwo
variables. It varies between —1 and +1 with the
intermediatevalue of zero indicating the absenceof
correlation.Thelimiting valuesindicateperfectnega-
tive (inverse)or positivecorrelation(figure 3).

r— 0.6 L:~:1t
Figure 3 — Correlation Coefficients

3.2.7 coverage

The percentagefrequencythat anintervalestimateof
a parametercontains the true value. Ninety-five
percentconfidenceintervalsprovide95% coverageof
the true value. That is, in repeatedsamplingwhena
95% confidence interval is constructed for each

sample,over the long run the intervals will contain
thetruevalue95% of thetime.

3.2.8 distribution — seefrequency distribution

3.29 error

In a result, the differencebetweenthe measuredand
truevaluesof thequantitymeasured.

5

L~

3.2.10 estimate -

A value calculated from a sample of data as a
substitutefor an unknownpopulationparameter.For
example,the experimentalstandarddeviation(S) is
theestimatewhich describesthepopulationstandard
deviation(cr).

3.2.11 fossilization

In the calibrationprocess,live, randomerrors may
becomefixed, systematic(fossilized)errorswhenonly
a singlecalibrationis relevant.

3.2.12 influence (sensitivity) coefficient

Theerrorpropagatedto the resultdueto unit errorin
themeasurement.(See7.4)

1.0
S.

— 0.0
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3.2.13 laboratorystandard

An instrumentwhich is calibratedperiodicallyby the
primary test facility. The laboratorystandardmay
alsobecalledatransferstandard.

3.2.14 mean — see average value

3.2.15 measurement error

The collectiveterm meaningthe differencebetween
the true value and the measuredvalue. It includes
bothsystematicandrandomcomponents.

3.2.16 Monte Carlo simulation

A mathematicalmodel of a system with random
elements,usuallycomputeradapted,whoseoutcome
dependson the application of randomly generated
numbers.

3.2:17 observed value

The valueof a characteristicdeterminedas theresult
of an observationor test.

3.2.18 standard error of the mean

An estimateof the scatterin a set of samplemeans
basedon a givensampleof sizeN. Thenthestandard

errorof themeanis: S/~j~

3.2.19 statistical quality control chart

A chart on which limits aredrawnandon which are
plottedvaluesof any statisticcomputedfrom succes-
sive samplesof aproduction.

The statisticswhich are used (mean, range,percent
defective,etc.) define the different kinds of control
charts.

NOTES: 1) Systematicerrorsandtheir causesmay
beknownor unknown.

3.2.20 Taylor’s series

A powerseriesto calculatethevalueof a functionat a
point in the neighborhoodof some referencepoint.
The series expressesthe difference or differential
betweenthe new point and the referencepoint in
termsof thesuccessivederivativesof the function.Its
form is:

f (X) — f (a) ~ (X—a~ft (a) ÷R~

wheref r (a) denotesthevalueof ther-th derivativeof
f(x) at the referencepoint X a. Commonly,if the
seriesconverges,the remainderR~is madeinfinitesi-
mal by selectingan artibrary numberof terms and
usuallyonly thefirst term isused.

3.2.21 uncertainty

An estimateattachedto an observationor a test
result which characterizestherangeof valueswithin
which the true value is assertedto lie. Note: Uncer-
tainty of a measurementcomprises,in general,many
components.Some of these componentsmay be
estimatedon thebasisof the statisticaldistribution of
the resultsof a seriesof measurementsand canbe
characterizedby theexperimentalstandarddeviation.
Estimatesof othercomponentscanonly be basedon
experienceor otherinformation.

3.2.22 Welch-Satterthwaite degrees of freedom

A method for estimatingdegreesof freedom of the
result whencombiningexperimentalstandarddevia-
tionswith unequaldegreesof freedom.

4 General principles of measurementuncertainty

analysis

4.1 Nature of errors

All measurementshaveerrors evenafter all known
correctionsandcalibrationshavebeenapplied.The
errors may be positive or negativeandmay be of a
variable magnitude. Many errors vary with time.
Somehavevery short periodswhile othersvarydaily,
weekly, seasonallyor yearly. Those which remain
constantor apparentlyconstantduring the test are
calledbiases,or systematicerrors.The actualerrors
are rarely known; however, upper bound~on the
errorscanbe estimated.The objectiveis to construct
an uncertaintyinterval within which the true value
will lie.

Errors arethedifferencesbetweenthe measurements
and the true value which is alwaysunknown. The
total measurementerror, ö, is divided into two
components:f3, a fixed systematicerrorandarandom
error, ~, as shownin figure4. In somecases,the true
value may be arbitrarily defined as the value that
would be obtainedby a specific metrology laboratory.
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Uncertaintyis an estimateof the errorwhich in most
caseswould notbe exceeded.Thereare threetypesof
errorto beconsidered:

a) randomerrors— see4.2

b) systematic(bias)errors— see4.3

c) spuriouserrors or blunders(assumedzero)

— see4.4

True

It is rarelypossibleto give an absoluteupperlimit to
the valueof the error. It is, therefore,morepractica-
ble to give an interval within which the true valueof
the measuredquantitycan be expectedto lie with a
suitablyhighprobability. This“uncertaintyinterval”.
is shownas {X — U, X + U] in figure 5 (the interval
is twicethecalculateduncertainty).

Since measurementsystemsaresubjectto two types
of errors,systematicandrandom, it follows that an
accuratemeasurementis one that has both small
randomandsmallsystematicerrors(seefigure6).

Average
measurement

Figure 4 — Measurementerror

LOWER —U
LIMIT

TRUE VALUE

MEASURED
VALUE (X)

UPPER
LIMIT

ERROR

1~

Figure 5 — Uncertainty interval X — U

x—u x i+u

7

Value

S =,‘3 ~ �

error

Sin9le
measurement

~Random error

—9 � 15 ~

Meazurement—

O25~r



Measurement Error (Systematic, Random, and Accuracy)

Small random error
Zero systematic
error
accurate

Large random error
Zero systematic
error
inaccurate

True Value and Average

Measurement

True Value and Average

True Value Average

Measurement

True Value Average

Small random error
Large systematic
error
inaccurate

Large random error
Large systematic
error
inaccurate

Figure 6 — Measurementerror

4.2 Random error (precision)

Randomerrorsaresometimesreferredto asprecision
errors.Randomerrorsarecausedby numerous,small,
independentinfluenceswhichpreventameasurement
systemfrom delivering the samereadingwhen sup-
plied with thesameinput valueof the quantitybeing
measured.The datapoints deviatefrom the meanin
accordancewith the laws of chance,such that the
distributionusuallyapproachesa normaldistribution
as the number of data points is increased.The
variationbetween repeatedmeasurementsis called
random or precision error. The standarddeviation
(a), figure 7, isusedasameasureof therandomerror,
g. A large standarddeviation meanslarge scatterin
the measurements.The statistic (S) is calculated
from a sampleto estimatethestandarddeviationand
is calledthe experimentalstandarddeviation.

N is thenumberof measurementsand
X istheaveragevalueof individual
measurements,X.

For the normal, distribution, the interval

X ±t95 S/\/N will includethetrue mean,~t, approx-

imately 95% of the time. When the sample size is
small, it is necessaryto usetheStudent’st valuesat
the 95% level. For sample sizesequal to or greater
than 30, two experimentalstandarddeviations(2S)
areusedasan estimateof theupperlimit of random
error.Thisis explainedin AnnexC. -

The random error in the result can be reducedby
making as many measurementsas possibleof the
variableandusingthe arithmetic meanvalue, since
the standarddeviatiOn of themeanof N independent

measurementsis ,~ times smallerthan the stand-

arddeviationof the measurementsthemselves.

aindMdual

and,analogously

Ss~—

Measurement Measurement

s~
j=1= N—I

Where

(1)
(2)

(3)

8



Fv.qu.ncy ol
.bwvatlan

Figure 7 — Randomerror

4.3 Systematic error (bias)

The secondcomponent of the total error is the
systematicerror, ~3.At eachflow level this error is
constantfor the durationof the test (figure 4). In
repeatedmeasurementsof a given sample, each
measurementhas the same systematicerror. The
systematicerror can be determinedonly when the
measurementsare comparedwith the true value of
the quantitymeasuredandthis is rarelypossible.

Theoriginal ISO 5168hadthreecomponentsof error-
random, systematicand systematicthat varieswith
flow level. Within this revision, only the first two
componentsareusedto simplify the analysis,recog-
nizing that both componentsmay vary at different
levelsof flow.

Everyeffort shallbemadeto identify andaccountfor
all significant systematicerrors. These may arise
from imperfect (1) calibrationcorrections,(2) instru-
mentationinstallation, and (3) data reduction, and
may include (4) humanerrorsand(5) methoderrors.
As thetruesystematicerroris neverknown,anupper
limit, B, is usedin theuncertaintyanalysis.

In mostcases,thesystematicerror,f3, is equallylikely
to beplus or minusaboutthe measurement.That is,
it is not known if the systematicerror is positiveor
negative,andthe systematicerror limit reflectsthis
as ±B. Thesystematicerrorlimit, B, is estimatedas
anupperlimit of thesystematicerror,f~.

9

4.4 Spurious errors

Theseareerrors suchas humanmistakes,or instru-
ment malfunction,which invalidatea measurement;
for example,thetransposingof numbersin recording
dataor the presenceof pocketsof air in leadsfrom a
water line to a manometer.Such errors cannotbe
treatedwith statisticalanalysisandthemeasurement
shouldbe discarded.Everyeffort shouldbe madeto
eliminate spurious errors to properly control the
measurementprocess.

To ensurecontrol,all measurementsshouldbe moni-
tored with statistical quality control charts. Drifts,
trends, and movements leading to out-of-control
situationsshouldbe identifiedand investigated.His-
tories of data from calibrations are required for
effective control. It is assumedherein that these
precautionsare observedandthat the measurement
processis in control; if not, themethodsdescribedare
invalid.

After all obvious mistakes havebeen correctedor
removed,theremay remaina few observationswhich
aresuspicioussolelybecauseof their magnitude.

For errorsof this nature,the statisticaloutlier tests
given in annexD shouldbe used.Thesetestsassume
the observationsare normallydistributed.It is neces-
sary to recalculatethe experimentalstandarddevia-
tion of the distribution of observationswhenevera
datum is discardedas a result of the outlier test. It

Av,r~g.
Muur,m.nt

Als. cafl.d
•R.p..t.bWty .~ror
•R.edom.tror
• S.mpU.~g.~,oe
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shouldalsobe emphasizedthat outliersshouldnotbe
discardedunlessthereis an independenttechnical {X — u,x + uj.
reasonfor believing that spuriouserrors may exist: (6)
datashouldnot lightly bethrown away.

Since systematicuncertaintiesare basedon judge-

4.5 Combining elemental errors ment and not on data, thereis no way of combining

The test objective,test duration andthe numberof systematicand random uncertaintiesto produce a
calibrationsrelatedto thetestaffect theclassification singleuncertaintyfigure with a statistically rigorousconfidencelevel. However,sinceit is acceptedthat a
of errors into systematicand randomerror compo-
nents.Guidelineswill bepresentedin clause6. singlefigure for the uncertaintyof ameasurementisoften required,two alternativemethodsof combina-

After all elementalerrors havebeen identified and tion arepermitted.
estimatedascalibration,dataacquisition,datareduc-
tion, methodicerrorsandsubjectiveerrors,a method 1) Linearaddition:
for combiningthe elementalrandomandsystematic
error limits into the randomand systematicerror UADD = B + t95 S~
limits of the measurementis needed.The root-sum- (7)
squareor quadraturecombination is recommended.

_____________ 2) Root-sum-squarecombination:

s= ~ s~
alL j all i (4) U1~= B2

+ (t~S~)2_____________ (8)

B= ~ ZB~
all j all i (5) Typically, U~Dwill havea coverageof approximate-

ly 99 percent, and URSS will have a coverage of
4.6 Uncertainty of measurements

approximately95 percent.(SeeAnnexF.)

The measurementuncertainityanalysiswill be corn-
pletedwhen: where B is the systematicerror limit from equation

(5) and S~is the experimentalstandarddeviationof
a) The systematicerror limits and standard the mean(equations(4) and(3)). If largesamples(N

deviationsof themeasurehavebeenpropa- > 30) areusedto calculateS, the value2.0 may be
gatedto errors in the test result, keeping usedfor t95 for simplicity. If smallsamples(N � 30)
systematicandrandomerrorsseparate areusedto calculateS, the methodsin annexC are

required. There are three situations where it is
b) If small samplesare involved, an estimate possibleto developa statisticalconfidenceinterval

of the degreesof freedomof theexperimen- for theuncertaintyinterval:
tal standarddeviationof the testresult has
beencalculatedfrom the Welch-Satterth- a) If the systematicerror limits arebasedon
waiteformula. (seeannexC) interlaboratorycomparisons,themethodis

presentedin ISO 5725.
c) The random and systematic errors are

combinedinto a singlenumberto expressa b) If the distribution of the systematicerror
reasonablelimit for error.

limits are assumedto havea rectangular
For simplicity of presentation,a singlenumber,u, is distribution, the methodis shownin annex
neededto expressa reasonablelimit of error. The E.
single number,some combination of the systematic
error and randomerror limits, must havea simple c) If the systematicerror is judged to be
interpretation(like the largesterror reasonablyex- negligible comparedto the random error,
pected),andbe usefulwithout complexexplanation. the uncertainty interval is the test result
For example,the true value of the measurementis plus and minus t95 S~,which is a 95%
expectedto lie within the interval confidenceinterval.

10



4.7 Propagation of measurement errors to test
result errors

If the test result is a function of severalmeasure-
ments,the randomerror andsystematicerror limits
of themeasurementsmustbecombinedor propagated
to the test result using sensitivity factors, 9, that
relate the measurementto the test result. Small
samplemethodsare given in annexC.

In general,for m measurements,the randomerror
andsystematicerror of the testresult is obtainedas
follows:

Sft = 1k! ~ (9mSm)2

V
BR dl! ~ (8m Bm)2

aiim

(9)

(10)

The uncertainty intervals for the test result are
formed in the same manner as described for the
measurementin 4.6.

4.8 Uncertainty analysis before and after
measurement

Uncertaintyanalysisbeforemeasurementallows cor-
rectiveactionto be takenprior to the testto reduce
uncertaintieswhen they are too large or when the
differenceto bedetectedin thetestis thesamesizeor
smallerthan the predicteduncertainty.Uncertainty
analysisbefore the test can identify the most cost
effective corrective action and the most accurate
measurementmethod.

The pretestuncertaintyanalysisisbasedon dataand
information that exists before the test, such as
calibration histories,previoustestswith similar in-
strumentation,prior measurementuncertaintyanaly-
sis, expert opinions and, if necessary,specialtests.
With complex tests,thereare often alternativesto
evaluate prior to the test such as different test
designs, instrumentationarrangements,alternative
calculationproceduresandconcommitantvariables.
Correctiveactionresultingfrom this pretestanalysis
mayinclude

a) Improvementsto instrumentationif the
errorsareunacceptable

b) selection of a different measurementor
calibrationmethod

11

c) repeatedtesting and/or increasedsample
sizesif the randomerrorsareunacceptably
high. The standarderror of the mean is
reducedas the numberof samplesusedto
calculatethemeanis increased.

d) Insteadof repeatedtestingthe test dura-
tion can be extended,in order to average
theoutputscatter(noise)of theflowmeter,
resulting in a small random error per
observation.

(example— ultrasonicandvortexshedding
metersmay haveto be calibratedagainsta
master meter allowing longer test times
thanallowedby amicro prover.)

e) Rotating flowmeters usually generatean
output showinga periodic cycle superini-
posed on an averagemeter factor. In this
casethe testdurationshallbe matchedto
an integermultitude of half or full periodic
intervalsin orderto obtainthe shortesttest
times.

(example — In calibrating positive dis-
placement meters with a small volume
micro prover, the double chronometry
pulsesshall be comparedto an integerof
pulsesgeneratedper revolution of the me-
ter.)

Severaliterationsmay be requiredin orderto obtain
therequiredaccuracy.

Posttestanalysisis basedon theactual~neasurement
data. It is requiredto establishthe final uncertainty
intervals. It is also used to confirm the pretest
estimatesand/or to identify datavalidity problems.
When redundant instrumentation or calculation
methods are available, the individual uncertainty
intervals should be comparedfor consistencywith
eachotherandwith thepretestuncertaintyanalysis.
If theuncertaintyintervalsdo not overlap,a problem
is indicated.The posttestrandomerror limits should
be comparedwith thepretestpredictions.

5 Identification and classification of elemental
measurement errors

5.1 Summary of procedure

Make a complete,exhaustivelist of every possible
measurementerror for all measurementsthat affect

O
2
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the endtest result. For convenience,group them by
someor all of thefollowing categories:(1) calibration,
(2) dataacquisition,(3) datareduction, (4) errors of
method and (5) subjectiveor personal.Within each
category,there may be systematicand/or random
errors.

5.2 Systematic(bias) vs.random(precision)

Systematicerrorsarethosewhich remainconstantin
theprocessof measurement.

Typical examplesof systematicerrors of flow-rate
measurementsare:

a) errors from a single flowmeter calibration

b) errorsof determinationof the constantsin
the working formula of a measuring
method

c) errorsdueto truncatinginsteadof rounding
off the resultsof measurement.

Where the value andsign of a systematicerror are
known, it is assumedto be corrected(the correction
being equal in value and opposite in sign to the
systematicerror). Inaccuracyof thecorrectionresults
inaresidualsystematicerror.

Randomerrorsare thosethat producevariation (not
predictable)in repeatedmeasurementsof the same
quantity.

Typical randomerrorsassociatedwith flowrate mea-
suremeritare thosecausedby inaccuratereadingof
the scaleof a measuringinstrumentor by the scatter
of theoutputsignalof aninstrument.

The effect of random errors may be reducedby
averagingmultiple results of the samevalue of the
quantity.

The preliminary decision to determine if a given
elemental source contributes to systematic error,
random error or both, is made by adopting the
recommendation:the uncertaintyof a measurement
shouldbeput into oneof two categoriesdependingon
how the uncertaintyis derived.A randomuncertainty
is derivedby a statisticalanalysisof repeatedmea-
surementswhile a systematicuncertaintyis estimat-
ed by nonstatisticalmethods.This recommendation
avoids a complex decision and keepsthe statistical
estimatesseparatefrom the judgementestimatesas

12

long as possible.Thedecisionis preliminaryandwill
be reviewedafter considerationof the definedmea-
surementprocess.

5.3 Measurement error categorization

Possibleerror sourcescanbe divided arbitrarily into
threeto five categories:

1) CalibrationErrors(see5.4)
2) DataAcquisitionErrors(see5.5)
3) DataReductionErrors(see5.6)
4) Errorsof Method (see5.7)
5) Subjectiveor Personal(see5.8)

The sizeandcomplexity of the measurementuncer-
tainty analysismay leadto the useof any or all of
thesecategories.

In mostcases,metrologicalmaintenance(calibration,
verification, certification) of flowmeters, flow-rate
measurementsandprocessingof thedataaredoneby
differentpersonnel.To controlthepossiblesourcesof
errors, it is advisableto relatethem to the stagesof
preparation,measurementandprocessingof thedata.

In such cases,it is advisableto classify errorsinto:

a) calibrationerrors(see5.4)

b) errors of measurementor dataacquisition
errors(see5.5)

c) errorsof processingthe measurementdata
or datareductionerrors(see5.6)

5.4 Calibration errors

The major purposeof the calibrationprocessis to
determine systematic errors in order to eliminate
them. The calibration processexchangesthe large
systematicerrorof an uncalibratedor poorly calibrat-
ed instrument for the smaller combination of the
systematicerror of the standardinstrumentandthe
randomerror of the comparison.This exchangeof
errors is fundamentaland is the basisof the notion
that the uncertainty of the standardshould be
substantiallyless than that of the test instrument.

Eachcalibrationin thehierarchyconstitutesan error
source.Figure 8 is a typical transducercalibration
hierarchy. Associatedwith each comparisonin the
calibration hierarchy is a pair of elementalerrors.
Theseerrors are the systematicerror limit andthe

O259~



samplestandarddeviationin eachprocess.Note that
theseelementalerrorsmaybe cumulativeor indepen-
dent. For example,B21 may include B11. The error

sourcesare listed in table 1. The seconddigit of the
subscriptindicatesthe errorcategory,i.e. 1 indicates
calibrationerror.

Standards Laboratory

Inter-L~aboratoryStandard

Transfer Standard

Working Standard

Measurement
tnstrument

Figure 8 — Basic measurementcalibration hierarchy

Table 1 — Calibration hierarchy error sources

Calibration
Systematic

error

Experim~nta1
standard
deviation

Degrees
of

freedom

SL - rLS

ILS - TS

TS - WS

WS - MI

B11

B21

B31

B41

S~1

S21

S31

S41

v
11

v21

v31

v4~
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5.5 Data acquisitionerrors

Figure 9 illustratessomeof the error sourcesassoci-
atedwith a typical pressuredataacquisitionsystem.
Dataare acquiredby measuringtheelectricaloutput
resultingfrom pressureappliedto astrain gagetype
pressure measurement instrument. Other error
sources,such as probeerrors, including installation
effects, and environmental effects, also may be
present.The effectsof theseerror sourcesshouldbe
determinedby performingoverall systemcalibrations,
comparingknown applied pressureswith measured
values.However, shouldit not bepossibleto do this,
then it is necessaryto evaluateeachof the elemental
errors and combinethem to determinethe overall
error.

O25~r



Pressure

Figure 9 — Data acquisition system

Some of the dataacquisitionerror sourcesare listed
in table2. Symbolsfor the elementalsystematicand
randomerrors and for the degreesof freedom are
shown.Note theseelementalerrorsareindependent,
notcumulative.

Table 2 — Data acquisition error sources

Error Source
Systematic

error

Experimental
standard
deviation

Degrees
of

freedom
Excitation Voltage B

12
S

12
v
12

Signal Conditioning B
22

S
22

v
22

RecordingDevice B
3~

S
32

v
32

PressureTransducer B42 S42 V
42

ProbeErrors B52 S52 v~
2

Environmental Effects B
62

S
62

V
62

SpacialAveraging B
72 S

79
v
72

5.6 Data reduction errors

Computationson raw dataproduceoutput in engi-
neering units. Typical errors in this processstem
from curve fits andcomputationalresolution.These
errorsoftenare negligible.

Symbols for the data reduction error sourcesare
listedin table3.

Table 3 — Data reduction error sources

Error source
Systematic

error

Experimental
standard
deviation

Degrees
of

freedom

Curve Fit

Computational
Resolution

B13

B
73

S13

S
23

v
13

v
23

Errorsof methodarethoseassociatedwith a particu-
lar measurementprocedure (principles of use of
instruments)and also with the uncertaintyof con-
stantsusedin calculations.

Someexamplesare errors from indirect methodsof
flow ratemeasurementassociatedwith physical,inac-
curacy of the relationship between the measured
quantity and flow-rate, or with inaccuracyof the
constantsin therelationship.Theseinaccuraciesmay
be due, for instance, to the fact that the flow
conditionsprevailingduring themeasurementareriot
identical to the conditions in which the calibration
has been carried out or for which a standardized
dischargecoefficienthasbeenestablished.In certain
methodsof flow measurement(differential pressure
devicesfor instance),thesesourcesof error arising
from the flow conditions are coveredby the uncer-
tainty associatedwith the dischargecoefficient,as far
as the installationconditionsprescribed-inthe stand-
ardare satisfied;if they arenot, that Standarddoes
notapply. In othermethods(velocity-areamethodfor
instance), the uncertainty arising from the flow
conditionsis identified as a componentof the total
uncertainty;it shallbe evaluatedby the userin each
caseand combinedwith the other elementaluncer-
tainties.

As a rule, errors of method have a systematic
characterand can be determinedin the course of
certificationof aflow-rate measuringprocedure.

5.8 Subjective errors

Subjectiveerrors arecausedby personalcharacteris-
tics of the operatorswho calibrateflowmeters,per-
form measurementsandprocessthe data.Thesecan
includereadingerrors andmiscalculations.

Transducer

Excitation
Voltage
Source

Measurement S~gnaI

5.7 Errors of method
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6 Estimation and presentation of elemental errors

6.1 Summary of procedure

Obtain an estimate of each error. If the data is
available to estimatethe experimentalstandarddevi-
ation, classifythe errorasarandomerror.Otherwise,
classify it asasystematicerror.

Reviewthe testobjective,test duration and number
of calibrationsthat will affect the testresult. Make
the final classificationof elementalerrors for each
measurement.If an errorincreasesthe scatterin the
measurementresult in thedefinedtest, it is a random
error;otherwise,it is asystematicerror.

6.2 Calculate the experimental standard deviation

There are many waysto calculatethe experimental
standarddeviation:

a) If theparameterto bemeasuredcanbeheld
constant,a number of repeatedmeasure-
mentscan be usedto evaluateequation(1)

~ N—i (10)

b) If thereareM redundantinstrumentsorM
redundantmeasurementsandthe parame-
ter to be measuredcanbe heldconstantto
take N repeat readings, the following
pooledestimateof the experimentalstand-
arddeviationfor individual readingscanbe
used:

I (X~Xj~

Spoo~ M(N — 1)

For the experimentalstandarddeviation of
the averagevalueof theparameter

s SPO
0

I,d

~ (12)

c) If a pair of instruments(providing mea-
surementsX11 and X2~)which have the
sameexperimentalstandarddeviation are
usedto estimatea parameterthat is not
constantwith time, the differencebetween

the readings,z~,maybeusedto estimatethe
experimental standard deviation of the
individual instrumentsas follows:

= xli — x2~

If the degreesof freedomare less than 30, the small
samplemethodsshownin annexC arerequired.

6.3 Estimate the systematicerror limit

In spite of applying all known correctionsto over-
come imperfectionsin calibration, data acquisition
anddatareductionprocesses,somesystematicerrors
will probablyremain.To determinetheexactsystem-
atic errorin a measurement,it would be necessaryto
comparethe truevalueandthe measurements.How-
ever, as the true valueis unknown,it is necessaryto
carry outspecialtestsor utilize existingdatathatwill
provide systematicerror information. The following
examplesaregivenin orderof preference.

a) Interlaboratoryor interfacility testsmake
it possible to obtain the distribution of
systematicerrorsbetweenfacilities (Refer-
enceISO 5725).

b) Comparisonsof standardswith instru-
mentsin the actualtest environmentmay
be used.

c) Comparisonof independentmeasurements
that dependon different principles can
provide systematicerror information. For
example,in a gasturbine test, airflow can
be measuredwith (1) an orifice, (2) a
beilmouth nozzle, (3) compressorspeed-
flow rig data, (4) turbine flow parameters
and(5) jet nozzlecalibrations.

d) Whenit is known that a systematicerror
resultsfrom aparticularcause,calibrations
may be performedallowing the causeto
perturbatethrough its completerange to
determinethe rangeof systematicerror.

______

= V 2(N— 1) (13)

where

(11)
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e) If thereis no sourceof datafor systematic
error, theestimatemustbe basedon judg-
ment.An estimateof an upperlimit of the
systematicerroris needed.Instrumentation
manufacturers’ reports and other refer-
encesmayprovide information.It is impor-
tant to distinguishbetweenthe “estimate”
of an upper limit on systematic error
obtained by this method and the more
reliable estimateof a randomerror arrived
at by analyzing data. There is a general
tendencyto underestimatesystematicun-
certaintieswhen a subjectiveapproachis
used,partly throughhumanoptimism and
partly through the possibility of overlook-
ing theexistenceof somesourcesof system-
atic error.Greatcareis thereforenecessary
whenquotingsystematicerrorlimits.

Sometimesthe physics of the measurementsystem
provideknowledgeof the sign but not the magnitude
of the systematicerror.For example,hot thermocou-
ples radiate andconductthermal energyaway from
the sensorto indicatelower temperatures.The sys-
tematicerror limits in this casearenon-symmetrical,
i.e., not of the form ±B. They areof the form B~for
the upper limit and B for the lower limit. Thus,
typical systematic error limits associatedwith a
radiatingthermocouplecouldbe:

B+ = 0 degrees
B = —10 degrees

For elementalerror sources,the interval from B+ to
B mustincludezero.

6.4 Final error classification based on the defined
measurement

Uncertainty statementsmust be related to a well
definedmeasurementprocess.Thefinal classification
of errors into systematic(bias) and random (preci-
sion) dependson the definition of the measurement
process.Someof theseconsiderationsare:

a) Long versusShortTermTesting(see6.4.1)

b) ComparativeversusAbsolute Testing (see
6.4.2)

c) Averaging to ReduceRandomError (see
6.4.3)

6.4.1 Long versus short term testing

The calibrationhistoriesaccumulatedbeforeor dur-
ing the testingperiodmay influence the uncertainty
analysis.

1) When the instrumentation is calibrated
only once,all thecalibrationerroris frozen
into systematic error. The error in the
calibration correction is a constant and
cannotincreasethe scatterin a testresult.
Thus, the calibration error, made up in
generalof systematicandfossilizedrandom
errors, is consideredto be all systematic
errorsin this case.

2) If the test period is long enough that
instrumentationmay be calibratedseveral
times or more and/or several test stands
are involved, the random error in the
calibration hierarchy (see 5.4) should be
treatedascontributingto theoverallexper-
imental standarddeviation. The experi-
mentalstandarddeviationsmay be derived
from calibrationdata.

6.4.2 Comparative versus absolute testing

The objectiveof a comparativetest is to determine,
with the smallestmeasurementuncertaintypossible,
thenet effectof adesignchange.The first testis run
with the standardor baselineconfiguration. The
second test is run with the design change.The
difference between the results of thesetests is an
indication of the effect of thedesignchange.As long
as only the differenceor net effect betweenthe two
testsis considered,all systematicerrors,being fixed,
will cancelout. The measurementuncertaintywill be
composedof randomerrorsonly.

The uncertainty of the back-to-backtests can be
considerablyreducedby repeatingthem severaltimes
andaveragingthedifferences.

All errors in a comparativetest arisefrom random
errorsin dataacquisitionanddatareduction.System-
atic errors are effectively zero. Since calibration
random errors havebeenconsideredsystematicer-
rors,theyalso areeffectivelyzero.

The test result is the differencein flow betweentwo
testresults,r1 andr2.
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6.5 Example: a calibration constant
L~r= r~— r2

and

S~r= ~S~1+ S~,= ~ S~

whereSr isthe randomerrorof the first test,theroot
sum-squareof the experimentalstandarddeviations
from dataacquisitionanddata reduction,and Sr2 is
assumedto equalSr•

6.4.3 Averaging to reduce random error

Averaging test results is often usedto improve the
randomuncertainty.Careful considerationshouldbe
given to designingthe testseriesto averageas many
causesof variationaspossiblewithin costconstraints.
Thedesignshouldbetailoredto thespecificsituation.
For example,if experienceindicatestime-to-time and
rig-to-rig variations are significant, a design that
averagesmultiple testmeasurementresultson onerig
on one day may produce optimistic random error
estimates compared to testing several rigs, each
mountedseveraltimes, over a period of weeks.The
list of possibilities may include the aboveplus test
stand-to-test stand, instrument-to-instrument,
mount-to-mountandenvironmental,fuel, powerand
test crew variation. Historic data is invaluablefor
studying these effects.* If the pretest uncertainty
analysisidentifies unacceptablylarge error sources,
specialteststo measurethe effectsshouldbe consid-
ered.

* A statisticaltechnique,analysisof variance(ANOVA) is usefulfor
partitioningtotalvarianceby cause.

(14) Assumeatestmeteris to be comparedor calibrated
with a mastermeterat oneflow level.Theobjectiveis
to determinea correction,called a calibrationcon-
stant, that will be addedto the testmeterobserva-
tions when it is installed for test. This calibration

(15) constantcorrectionwill makethe test meter “read
like” the mastermeter. During the calibration, the
mastermeter is usedto set the flow level as it is
usuallymore accuratethanthe testmeter.To reduce
thecalibrationrandomerror, N=13comparisonswill
be madeandaveraged.If the datawereplotted, the
datamight look like figure10.

17

If the mastermeter systematicerror limit from its
own calibration is judgedto be no larger than BM,
what will thetestmeteruncertaintybeafter calibra-
tion?

Define i~= MasterMeter Reading1— Test Meter
Reading

CalibrationConstantequalstheaverage

- L~.
K = =

(16)

The sample standarddeviation of the calibration
constantK is:

S --~--- I~~(L~_~)2KVi~l 13(12)
(17)

The l~estmeteris later installedin a teststand.Each
observationmade on the test meter is correctedby
adding K. By this process,the error in K from the
calibrationprocessis propagatedto thecorrecteddata
from theteststand.
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Mastermetersystematicerror= BM
Calibration randomerror= SK

Figure 10 — Calibration should compensatefor test metersystematicerror

If thedefinedmeasurementprocessis short, involving
a singlecalibration,K isconstantandthis errormust
be a constantor systematicerror. It includesthe
systematicerrorin themastermeterplus therandom
errorin the calibrationprocess.The randomerror is
fossilized into systematicerror. The fossilization is
indicatedby an asterisk.We can estimatean upper
limit for this systematicerroras:

BK ~IB~÷(t
95

5)*2

WhereBM is the systematicerror limit of the master
mete~randt

95
= 2.179for 12 degreesof freedom

(annexC).)

This calibration systematic error limit would be
combined with systematic error limits from data
acquisitionanddatareductionto obtain themeasure-
ment systematicerror limit. There would also be
randomerrorfrom theselasttwo processes.

If the uncalibratedtestmeterhada systematicerror
limit judged to be BT, the calibrationprocessim-
provedthe testaccuracyif BK is lessthan BT. Note
that the calibrationprocessdoesnot changethe test
meter random error which is included in the data
acquisition randomerror. However, the test meter

randomerror contributesto the calibration random
error SK. This contribution is reducedby averaging
thecalibrationdata.

If the test process is long and involves several
calibrations, the calibration error contributesboth
systematicerror (BM) andrandom error (t95 SK) to
the fmal testresult.

(18) If the test processis comparative,the differenáe
between two tests with a single calibration, the
calibrationerror is all systematicerror and cancels
outwhenoneresultis subtractedfrom theother.

18

7 Combination and propagation errors

7.1 Summary of procedure

Root-sum-squarethe systematicerror limits and
experimentalstandarddeviationsfor eachmeasure-
ment. Propagatethe measurementsystematicerror
andrandomerror limits separatelyall theway to the
final test result, either by sensitivity factors or by
finitely incrementingthe data reduction program.
Work consistentlyin eitherabsoluteunitsor percent-
ages.

(UNKNOWN)
True Value

10-

0-

0
z

U.’

0

a
z

Meter-to-be-calibrated
average

Master meter
average

U
U
MM
MM
MM
MM

MUM

xxx
xx

xxx

x
‘C
‘C
xx

FLOW RATE
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B = Z B~

7.2 Combining sample standard deviations

The experimental standard deviation (S) of the
measurementis theroot-sum-squareof the elemental
experimentalstandarddeviations from all sources,
thatis;

5k

S= IZS~
j=l i—i

wherej definesthe category:suchas (1) calibration,
(2) dataacquisition,(3) datareduction,(4) errors of
methodand(5) subjectiveor personal,andi defines
thesourceswithin thecategories.

Forexample:the experimentalstandarddeviationfor
the calibrationprocessin table1 is:

S
1

5
C,Iibratjon = ~‘S

91
+~ S

31
+ S

41
(20)

The measurementexperimentalstandarddeviationis
theroot-sum-squareof all theelementalexperimental
standarddeviationsin themeasurementsystem:

S—s — 2_/5 2 2— M,,*ur~me.,t — j — ‘~ I ÷ 2÷ 3
i—i

Categories(4) or (5) areoptionalandmay or maynot
beemployed.

7.3 Combining elemental systematic error limits

If therewereonly a few sourcesof elementalsystem-
atic errors, it might be reasonableto add them
togetherto obtainthe overall systematicerrorlimits.
Forexample,if therewerethreesources,theprobabil-
ity that they would all be plus (or minus) would be
one-half raised to the third power or one eighth.
However,the probability thatall threewill havethe
samesign and be at the systematicerror limit is
extremely small. In actualpractice, most measure-
ments will have ten, twenty or more sourcesof
systematicerror.Theprobability that they would all
be plus (or minus) andbe at their limit is close to
zero,andtherefore,it is moreappropriateto combine
themby root-sum-square.

If a measurementuncertaintyanalysisidentifies four
or less sourcesof systematicerror, thereshouldbe
some concern that some sourceshave beenover-
looked.Theanalysisshouldbe redoneandexperthelp
shouldbe recruitedto examinethecalibrationhierar-
chy, thedataacquisitionprocessandthe datareduc-
tion procedurefor additionalsources.

Therefore, the systematicerror limit will be used
hereinas theroot-sum-squareof theelementalerrors
from all sources.

(22)

For example: the systematic error limit for the
(19) calibrationhierarchy(table1) is

B1 = ~ = ~jB~1÷B~1÷B~1÷B~1 (23)

The systematicerrorlimit for thebasicmeasurement
processis

B = ~‘B~+ B~+B~
(24)

If any of the elementalsystematicerror limits are
non-symmetrical,separateroot-sum-squaresareused
to obtain B+ and B. For example,assumeB21 and
B23 are non-symmetrical, i.e. B~1,B~1,B5 andB~
areavailable.Then

(21) B0
= VB~1÷(B~1)2÷B~1÷B~1÷B~+ B~3÷(B~)2 (25)

W = ~jB~1÷(B~)2÷B~,÷B~1÷B~+ B~3-i-(B~)2 (26)

7.4 Propagation of measurement errors

Fluid flow parametersare rarely measureddirectly;
usually more basic quantitiessuch as temperature
and pressure are measured,and thi fluid flow
parameteris calculatedasafunction of the measure-
ments.Error in the measurementsis propagatedto
theparameterthroughthe function.The effectof the
propagationmay be approximatedwith the Taylor’s
series methods. It is convenientto introduce the
conceptof the sensitivity of a result to a measured
quantityas the error propagatedto the result dueto
unit error in the measurement.The “sensitivity
coefficient” (alsoknownas “influencecoefficient”) of
eachsubsidiaryquantity is most easilyobtainedin
oneof two ways.

a) Analytically

Where there is a known mathematical
relationship between the result, R, and
subsidiary quantities,Y1, Y2 . . ~K the
dimensional sensitivity coefficient, 9~of
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the quantity Y~,is obtained by partial
differentiation. Thus, if R = f (Y1, Y2
~K)’ then

oR

— BY,

Analogously, the relative (nondimen-
sional)sensitivity coefficient,9~’,is

— I9R/R
i~y7YT

In this form, the sensitivityis expressed
as “percent/percent.”That is, O~’is the
percentagechangein R brought about
by a 1% changein Y1. This is the form
to be used if the uncertaintiesto be
combinedare expressedas percentages
of their associatedvariablesratherthan
absolutevalues.

b) Numerically

Where no mathematicalrelationship is
available or when differentiation is diffi-
cult, finite incrementsmay be used to
evaluate9~.This is a convenientmethod
with computercalculations.

Here0~is givenby

AR
- AY1 (29)

The result is calculatedusingY1 to obtain
R, andthenrecalculatedusing(Y~+ AY) to

obtain (R + AR). The value of AY used
shouldbe assmallaspracticable.

Care should be taken to ensurethat the errors are
independent.With complex parameters,the same

(27) measurementmay be usedmore than once in the
formula. This may increaseor decreasethe error
dependingon whetherthesignof themeasurementis
thesameor opposite.If theTaylor’s seriesrelatesthe
mostelementarymesurementsto theultimateparam-
eter or result, these“linked” relationshipswill be

(28) properlyaccountedfor.

20

Thiseffect canbecoveredby calculatinga modified 9
by simultaneousperturbationof all the inputs likely
to beaffected,thus:

= (Changein output R due to simultaneous
applicationof linked error in all inputs,y1)

An example of this is barometricpressurewhich
affects all pressure inputs simultaneously, in a
“gauge-pressure”system.Anotherexampleis the use
of a common working standardto calibrate all the
pressuretransducers.

Such linked errors can then be combined with
independentones,thus:

S(R) = ~4I[On~~kS(yl2flk)]2 + X [9~S(y1)]~

•.5 Airflow example

(30)

In this example,airflow is determinedby the useof a
sonic nozzle andmeasurementsof upstreamstagna-
tion temperatureandstagnationpressure(figure 11).
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Airflow Measurement. W~

Flow

Theflow is calculatedfrom

Pit
W = CaF(p~’a (31)

where

W is themassflowrateof air
Fa is thefactorto accountfor thermalexpansionof

the venturi
a is theventurithroatarea

~‘i~ is thetotal (stagnation)pressureupstream
T1~is thetotaltemperatureupstream
~p5 is thefactorto accountfor thepropertiesofthe

air (critical flow constant)
C is thedischargecoefficient

The experimentalstandarddeviation for the Flow

(5w) is calculatedusingtheTaylor’s seriesexpansion.

AssumingC equals1 and,hasnegligibleerror

= { (9g. SF,)2+ (9,~.S~.)2÷(9,S,)2

+ (Op1 Sp1~)2÷(
9

T
11

ST1~)2}1/2 (32)

where

ow
OF,

denotesthepartial derivativeof W with respectto Fa.

21

11 (p*aplt \~(F,aP1~~~C~\,~ SFaJ+\~pr ‘.

f Fa(p~Pit \2 (F,(p*a \2
!\ ,~_ S81 +~ ,f1R~~S~11)

f F,q,~aP11 \2 11/2
~ ST) I

—2~fi~ It J (33)

By insertingthe valuesandrandomerrorsfrom table
4 into equation(32), therandomerror of 0.17 kg/sec
for airflow is obtained.

The systematic error in the flow calculation is
propagatedfrom the systematicerror limits of the
measuredvariables.UsingtheTaylor’s seriesformula
gives

B~= { (9~B81)2 + ~ B~)2+ (083 B13)2

+ . . . ÷(0 B8 )2]~2
Xm m (34)

Forthis example,

[(0F, B~,)2+ (0w. B~.)2+ (9a Ba)2

+ (9~B~11)2+ (
9

T
1

, BT1)2 ]1/2
It (35)

Takingthe necessarypartialderivativesgives

Figure 11 — Flow through a sonic nozzle
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8.2 Uncertainty intervals

B,, C [ j~~*aPlt _______

= ~ ~ti~:~ + (F8aPit B,.)2

(F,p*Pi,
+ \/~ B,)~+ (Fa~Y~aB~

1
)2

(Fa(P*aPtt BT )2]

+ —2~T~t

By insertingthe valuesandsystematicerror limits of
the measuredparametersfrom table4 into equation
(36), a systematic error limit of 0.32 kg/sec is
obtainedfor a nominalairflow of 112.64kg/sec.

Table 4 contains a summary of the measurement
uncertaintyanalysis for this flow measurement.It
should be noted the errors listed only apply to the
nominalvalues.

Table 4 — Flow data

.

Parameter Units
Nominal

value

Experimental
standard
deviation

(one
experimental
standard
deviation)

‘

Systematic
error

F,

C

(p~

a

Pit

T
1~

w

—

—

kg K112

newton sec

m2

Pa

K

kg/sec

1.00

1.0

0.0404

0.191

2.54XiO~

303.0

112.64

0.0

0.0

0.0

9.55X10’
5

345.0

0.17

0.17

0.001

0.0

4.04xi0~3

3.82X10
4

345.0

0.17

0.32

8 Calculation of uncertainty

8.1 Summary of procedure

SelectU~Dand/orURSSandcombinethesystematic
and random errors of the test result to obtain the
uncertainty. The test result plus and minus the
uncertainty is the uncertaintyinterval that should
containthe truevaluewith highprobability.

If informationexiststo justii~rthe assumptionthatthesystematic
error limits havea randomdistribution,arigorousstatisticcanbe
definedasshownin annexK

For simplicity of presentation,a singlenumber(some
combination of systematicand random errors) is
neededto expressa reasonablelimit for error. The
single numbershould havea simple interpretation
(like the largesterror reasonablyexpected)and be
useful without complex explanation. It is usually

(36) impossibleto defineasinglerigorousstatisticbecause
the systematicerror is an upper limit based on
judgmentwhich has unknown characteristics.*This
function is a hybrid combination of an unknown
quantity (systematicerror) and a statistic (random
error). If both numberswerestatistics,a confidence
interval would be recommended.95% or 99% confi-
dencelevelswouldbeavailableat thediscretionof the
analyst.Although rigorousstatisticalconfidencelev-
els are not available, two uncertainty intervals,
approximatelyanalogousto 95% and99% levels, are
recommended.Thisanalogyis discussedin Annex F.

8.3 Symmetrical intervals

Uncertainty(figure 12) for thesymmetricalsystemat-
ic error caseis centeredabout the measurementand
the uncertaintyintervalsaredefinedas:

R — U, R + U,where

U~D= U99= (B + t955)

UR~= U9~= \I B2+ (t95S)2

(37)

(38)

If the sample standarddeviation is basedon small
samples,the methodsin annexC may be usedto
determinea valueof Student’st95. For largesamples
(>30), 2 may be substitutedfor t95 in equations(37)
and(38).

If thetest result is an average (Th basedon sample

sizeN, insteadof asinglevalue (R), S/~JNshouldbe

substitutedfor S.

The uncertaintyinterval selected(equations(37) or
(38)) should be provided in the presentation;the
components(systematicerror,randomerror,degrees
of freedom)shouldbe availableirs an appendixor in
supportingdocumentation.Thesethreecomponents
may be required to substantiateand explain the
uncertaintyvalue, to providea soundtechnicalbase
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for improved measurements,and to propagatethe
uncertaintyfrom measuredparametersto fluid flow
parametersandfrom fluid flow parametersto other

morecomplexperformanceparameters(i.e., fuel flow
to Thrust SpecificFuelConsumption(TSFC),TSFC
to aircraft range,etc).

Measurement

Uncertainty Interval
(The True Value Should Be Within

This Interval)

Figure 12 — Measurementuncertainty interval (U99); symmetricalsystematicerror

9 Presentation of results

9.1 Summary of requirement

Thesummaryreportshouldcontainthenominallevel
of the test result, the systematicerror, the sample
standarddeviation, the degreesof freedomand the
uncertainty.The equationused to calculateuncer-
tainty, UADD or URSSshouldbe stated.The summary
should reference a table of the elementalerrors
consideredandincludedin theuncertainty.

9.2 Reporting error summary

The definition of the components,systematicerror
limit, experimentalstandarddeviationand the limit
(U) suggestsa summary format for reportingmea-
surementerror. The format will describethe compo-
nents of error, which are necessaryto estimate
further propagationof the errors,anda single value
(U) which is the largest error expectedfrom the

23

combinederrors.Additional information, degreesof
freedomfor the estimateof S, is requiredto usethe
experimental standarddeviation if small samples
were usedto calculateS. Thesesummarynumbers
providethe information necessaryto acceptor reject
themeasurementerror.The reportingformat is:

a) 5, the estimateof the experimentalstand-
arddeviation,calculatedfrom data.

b) For small samples,v, the degreesof free-
dom associatedwith the estimateof the
experimentalstandarddeviation (5). The
degreesof freedomforrnsmall samples(less
than 30) is obtainedfrom the Welch-Sat-
terthwaite procedure illustrated in
annexC.

c) B,-theupperlimit of the systematicerrorof
the measurementprocessor B and B~if
the systematicerrorlimit is non-symmetri-
cal.

Largest Positive Error

MeasurementScale

FO 182521
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d) The uncertaintyformula shouldbe stated.

U99 = (B + t95 S) or U95 = ~jB2
+ (t95 S),

the uncertaintyinterval, within which the
error should fall. If the systematicerror
limit is non-symmetrical, U~=W—t95S
and U~= B~+ t95 S. No morethan two
significant placesshould be reported.For
smallsamplesseeannexC.

The model components,5, v, B, andU, are required
to reportthe error of any measurementprocess.The
first threecomponents,S, v, andB, arenecessaryto:
(1) indicate corrective action if the uncertainty is
unacceptablylarge before the test, (2) to propagate
the uncertaintyto morecomplexparameters,and(3)
to substantiatetheuncertaintylimit.

9.3 Reporting error — table of elemental sources

To supportthemeasurementuncertaintysummary,a
tabledetailing the elementalerror sourcesis needed
for severalpurposes.If correctiveaction is neededto
reducethe uncertainty or to identify datavalidity
problems,the elementalcontributions are..required.
Further, if the uncertaintyquoted in the summary
appearsto be optimistically small, the list of sources
consideredshould be reviewed to identify missing
sources.For this reason,it is important to list all
sourcesconsideredevenif negligible.

Note that all errorsin table5 havebeenpropagated
from the basicmeasurementto theendresult before
listing and, therefore,they are expressedin units of
thetestresult.

Table 5 — Elementalerror sources

Experimental
Measurement standard SystematicSourceof

nominal deviation Degreesof error systematic
Source value S~

1 freedom v~ limit B~
1

error

aa

-a
a

aa

aaa

ii

subscript

11
21
31

12
22
32
42

13
23
33

Results

Nominal
Value S=~~ vw/s B=~7~

U95 ~B2÷(t,5S)2 =

t
95

%
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9.4 Pre-test analysis and corrective action 9.5 Post-test analysis and data validity

Uncertaintyis a function of the measurementpro-
cess.It providesan estimateof the largesterrorthat
may reasonablybe expectedfor that measurement
process.Errors larger than the uncertaintyshould

rarely occur. If the differenceto be detectedin an
experimentis of the samesize or smaller than the
projected uncertainty, corrective action should be
taken to reduce the uncertainty. Therefore,it is
recommendedthat an uncertaintyanalysisalwaysbe
done beforethe testor experiment.The recommend-
ed correctiveaction dependson whetherthe system-
atic or the random error is too large as shown in
table6.

Table 6 — Recommendedcorrective action if
the predictedpretestmeasurementaccuracy

is unacceptable

25

Post-testanalysisis requiredto confirm the pretest
estimatesor to identify datavalidity problems.Com-
parisonof measurementtestresultswith thepretest
analysis is an excellent data validity check. The
random error of the repeatedpoints or redundant
instrumentsshould not be significantly larger than
the pretestmeasurementestimates.Whenredundant
instrumentationor calculationmethodsare available,
the individual uncertaintyintervals shouldbe com-
pared for consistencywith eachother and with the
pretestmeasurementuncertaintyanalysis.

Threecasesareillustratedin figure 13.

WThen thereis no overlapbetweenuncertaintyinter-
vals, as in Case I, a problem exists. The true value
cannotbe containedwithin both intervals. That is,
thereshouldbe a very low probability that the true
value lies outside any of the uncertaintyintervals.
Either the uncertaintyanalysis is wrong or a data
validity problemexists. Investigationto identify bad
readings,overlookedsystematicerror, etc., is neces-
sary to resolve this discrepancy.Redundantand
dissimilarinstrumentationshouldbe compared.Par-
tial overlapof theuncertaintyintervals,asin CaseII,
alsosignalsthat aproblemmayexist.Themagnitude
of the problem dependson the amount of overlap.
The only situationwhen one can be confidentthat
the data is valid and the uncertainty analysis is
correct is CaseIII, when the uncertaintyintervals
completelyoverlap.

SystematicError Limit Too Large: Random Error Too Large:

• Improve calibration • Larger test sample

• Independentcalibrationsfor • More preciseinstrumentation
redundantmeters

• Redundantinstrumentation
Concomniitantvariable

• Data smoothing
• In place calibration

— Moving average
— Filter
— Regression

• Improvedesign of
experiment
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Case I
No Overla~

Case II
Partial Overlap

. Case III
Complete Overla~

uil
i~’
j_

uil
i,J. U2J

uil ~
~

—

.

.~

LJ2J
. ?~x2

~.

Figure 13 — Threepost-testmeasurementuncertainty interval comparisons
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Annex A: Examples on estimation of uncertainty in

airflow measurement

Introduction

A.2 Example one — test facility

A.2. I Definition of the measurement process

This annex contains three examplesof fluid flow
measurementuncertaintyanalysis. The first deals
with airflow measurementfor an entirefacility (with
severalteststands)overa longperiod. It alsoapplies
to a singletestwith a singleset of instruments.The
secondexampledemonstrateshow comparativede-
velopmenttests can reducethe uncertaintyof the
first example.The third exampleillustratesa liquid
flow measurement.

A.1 General

Airflow measurementsin gasturbineenginesystems
are generally made with one of three types of
flowmeters:venturis,nozzlesandorifices. Selectionof
the specific type of flowmeter to use for a given
application is contingent upon a tradeoff between
measurementaccuracyrequirements,allowablepres-
suredropandfabricationcomplexityandcost.

Flowmetersmaybefurtherclassifiedinto two catego-
ries: subsonicflow andcritical flow. With a critical
flowmeter, in which sonic velocity is maintainedat
theflowmeterthroat,massflowrateis afunctiononly
of the upstream gas properties.With a subsonic
flowmeter, where the throat Mach number is less
than sonic, mass flowrate is a function of both
upstreamanddownstreamgasproperties.

Equations for the ideal mass flowrate through noz-
zles, venturies and orifices are derived from the
continuityequation:

W = paV

In usingthe continuity equationas a basis for ideal
flow equationderivations, it is normal practice to
assumeconservationof massand energy and one-
dimensional isentropic flow. Expressionsfor ideal
flow will not yield actualflow sinceactualconditions
alwaysdeviatefrom ideal.An empirically determined
correctionfactor,the dischargecoefficient (C) is used
to adjustidealto actualflow:

C Wac~/Wjdea~

Whatisthe airflow measurementcapabilityof a given
industrialor governmenttest facility? This question
might relateto a guaranteein a productspecification
ora researchcontract.Notethat this questionimplies
that many test stands,sets of instrumentationand
calibrationsover a long period of time should be
considered.

Thesamegeneraluncertaintymodel is appliedin the
secondexampleto asinglestandprocess,thecompar-
ativetest.

Theseexampleswill provide,stepby step,the entire
processof calculatingthe uncertaintyof the airflow
parameter.Thefirst stepis to understandthedefined
measurementprocessandthen identify thesourceof
every possibleerror.For eachmeasurement,calibra-
tion errorswill be discussedfirst, then dataacquisi-
tion errors,datareductionerrors,andfinally, propa-
gationof theseerrorsto thecalculatedparameter.

Figure 14 depictsacritical venturi flowmeterinstalled
in the inlet ducting upstreamof a turbine engine
undertestfor this example.

When a venturi flowmeter is operatedat critical
pressure ratios, i.e., (P2/P1) is a minimum, the
flowrate through the venturi is a function of the
upstreamconditionsonly andmay becalculatedfrom

d2 PW = ~~CFa(P•~

A.2.2 Measurement error sources

(41)

(39) Eachof the variablesin equation41 mustbecarefully
consideredto determine how and to what extent
errorsin the determinationof the variableaffect the
calculatedparameter.A relativelylarge errorin some
will affectthe final answerverylittle, whereassmall
errors in others havea large effect. Particularcare
shouldbetakento identify measurementsthat influ-
encethe fluid flow parametersin morethanoneway.

In equation(41), upstreampressureandtemperature
(P1andT1) areof primaryconcern.Error sourcesfor
eachof thesemeasurementsare: (1) calibration, (2)

(40) dataacquisitionand(3) datareduction.
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A.2.2. 1 Figure 15 illustrates a typical calibration
hierarchy. Associatedwith each comparisonin the
calibration hierarchyis a possiblepair of elemental
errors,a systematicerror limit andan experimental
standarddeviation.Table 7 lists all of theelemental
errors. Note that these elemental errors are not

cumulative,e.g., B21 is not a function of B11. The
systematicerror limits shouldbe basedon interlabo-
ratory testsif available,otherwise,the judgment of
the best expertsmust be used. The experimental
standarddeviations are calculatedfrom calibration
historydatabanks.

Figure 14 — Schematicof sonic nozzleflowmeter installation upstreamof a turbine engine

Standards Laboratory

1
Measurement
Station

Flow

Sonic Nozzle Throat

Plenum

Labyrinth
Seal

Belimouth

Calibration

Calibration

Calibration

Interlaboratory Standard

Transfer Standard

Working Standard

Measurement Instrument

Figure 15 — Typical calibration hierarchy

Calibration
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Table 7 — Calibration hierarchy error sources Dataacquisitionerror sourcesfor pressuremeasure-

The experimental standard
acquisitionprocessis

S
2

= ~ S~
2

÷S~
2

÷S~
2

+S~
2

+S~
2

+S~
2

68.953~ 48.270~
+ 10 ÷ 60 )~77

Calibration
Systematic
error, P

0

Experimental
standard

deviation, P
0

Degrees
of

freedom

SL - ILS

ILS-TS

TS - WS

WS - MI

B
11

6&953

B
21

= 68.953

B
31

68.953

B
41

124.

S
11

13.787

S
21

13.787

S
31

13.787

S
41

36.541

v
11

10

v
21

= 15

v
31

20

v
41

= 30

mentarelistedin table8.

Table 8 — Pressuretransducerdata acquisition
error sources

Error source
Systematic
error, P

0

Experimental
standard

Deviation, P
0

Degrees
of

freedom

Excitation
Voltage

B
12

= 68.953 S
12

= 34.481 v
12

= 40

Electrical
Simulation

B
92

68.953 S
22

= 34.481 v
22

90

Signal
Conditioning

B
32

68.953 S
32

= 34.481 v
32

= 200

Recording
Device

B
42

= 68.953 S
42

= 34.481 v~= 10

Pressure
Transducer

B
52

68.953 S
52

= 48.270 v
52

100

Environmental
Effects

B
62

= 68.953 ~62 68.953 v
62

= 10

Probe Errors B
72

117.223 S
72

= 48.270 V
72

= 60

The experimentalstandarddeviationfor the calibra-
tion processis the root-sum-squareof the elemental
samplestandarddeviations,i.e.,

S1 = \/Sll+ S21+ S11+ S41

= ~Ji~?~872
+ 13.7872 + 13.7872+ 36.5412

43.65Pa (42)

Degreesof freedomassociatedwith S arecalculated
from theWelch-Satterthwaiteformulaasfollows:

(S~1÷S~
1

÷S~
1

÷S~
1

)2
vl= / ~4 Q

4
Q

4
Q

4

I ~‘1i ~‘21 ~31 ~~4j
—+ —+ —÷ —

V
11

V
21

V
31

V
41

— (13.787~+ 13.787~+ 13.7872+ 36.541~)~ =

— ( 13.787’ 13.787’ 13.787’ 36.541’
10 ÷ 15 + 20 ÷ 30

(43)

The systematicerrorfor the calibrationprocessis the
root-sum-squareof the elementalsystematicerror
limits, i.e.,

B1 = ~1B~÷B~1÷B~~1 (44)

(45)

deviation for the data

S
2

[34.481~~ 34.4812+ 34.4812+ 34.4812+ 48.2702

÷68.9532+ 48.270211/2

= 119.039P
0

(46)

(S~
3

+S~÷S~
2

÷S~÷S
2

÷S~÷5~)2
= / S~ S~ S

32
S

42
S

52
S

02
S

32

“12 + “22 ÷ “32 “42 + ‘p52 ÷ ~/52 + V~

(34.481~÷34.4812÷34.4812÷34.4812+ 48270~+ 689532 + 48.2702)2

// 34.481’ 34.481’ 34.481’ 34.481~ 48.270’
/ t, 40 + 90 ÷ 200 ÷ 10 ÷ 100

(47)

= V68.953’ ÷68.953’÷68.953’÷124.117’

172.2 P.
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The systematicerror limit for the dataacquisition
processis x

B2 = [68.9532 + 68.9532 + 68.9532 + 68.9532}l/2

+ 68.9532 + 68.9532 + 117.2232

The systematicerror limit for the data reduction
processis

B3 = ~jB~3÷B23

B3 = ~/68.9532 + 6.8942

= 205.6~a
(48)

or

= 69.297P5

S9 = ~JS~+ S~+ S~

(50)

(51)

Table9 listsdatareductionerrorsources.

Table 9 — Pressuremeasurementdata reduction
error sources

Error source—

Systematic
error, P

0

Experimental Degrees
standard of

deviation, ~a Lfreedom
Curve Fit

Computer
Resolution

B
13

= 68.953

B.,
3

6.894

S
13

= 0

S
23

= 0

v~
3

v
23

The experimentalstandarddeviation for the data
reductionprocessis

S3 = .,JS~3+S~3

= 0.0
(49)

= V43.65192 ~ 119.0392 + 0.02

= 126.790Pa
(52)

Degreesof freedomassociatedwith the experimental
standarddeviationaredeterminedasfollows:

v~= (S~
1

+S~
1

÷S~
1

+S~
1

÷S~÷S~2~S3~+S
42

+ 5~,÷S
62

+ S~
2

+S~,÷S~3)’

/ S~~l S~ ~ S~
1

S~
2

~ S~2 542

/ (__+ +—÷—÷_÷ +—~ V
42

+—V
11

V
21

V
31

V.
51

V
12

V
22

V
3~

S
2

S
2

S~
2

S~3 S~
3
~

+— ÷— ÷— ÷— +
V

52
V

62
V

72
V

13
V

23
I (53)

A computeroperateson raw pressuremeasurement
data to perform the conversionto engineeringunits.
Errorsin this processare calleddatareductionerrors
andstemfromcurvefits andcomputerresolution.

Computerresolutionis the sourceof a small elemen-
tal error. Some of the smallestcomputersused in
experimentaltestapplicationshavesix digits resolu-
tion. Theresolutionerroris thenplus orminusonein
106. Even though this error is probably negligible,
considerationshould be given to rounding off and
truncatingerrors. Rounding-offresults in a random
error.Truncatingalwaysresultsin asystematicerror
(assumedin this example.)

The experimental sample standarddeviation for
pressuremeasurementthenis

= [S~1+S~1+S~1÷S~1÷S~2÷S~2÷S~2

+ S~2~S~÷S~2÷S~2+S~÷52]h/2
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A.2.2.2 The calibration hierarchy for temperature
measurementsis similar to that forpressuremeasure-
ments.Figure 16 depictsa typical temperaturemea-
surementhierarchy. As in the pressurecalibration
hierarchy,eachcomparisonin the temperaturecalib-
ration hierarchy may produceelementalsystematic

andrandomerrors.Table 10 lists temperaturecalib-
ration hierarchyelementalerrors.

Table 10 — Temperaturecalibration hierarchyele-
mental errors

Calibration
Systematic
error, K

Experimental
standard

deviation,K

Degrees
of

freedom

SL - ILS

ILS-TS

TS - WS

WS - MI

B
11

0.056

B
21

= 0.278

B
31

= 0.333

B
41

= 0.378

0.002

~21 = 0.028

~31 = 0.028

S
41

= 0.039

2

V
21

= 10

= 15

v
41

30

The calibrationhierarchyexperimentalstandardde-
viationis calculatedas

SI = VS’~2±S~1+S~1+S~

Degreesof freedomassociatedwith S1are

(S~1÷S~1÷S~1-t-S~1)2
V

1
= ~

4

(!!V
11

+ V
21

V
31

V
41

/

— (0.002~÷0.0282÷0.0282+ 0.0392)2

— 1 0.002’ 0.028~ 0.028k 0.039~
2 ÷ 10 ÷ 15 + 30

Thecalibrationhierarchysystematicerrorlimit is

or

— (S~-i-S~+S~)2

VP_f S~ S~ S~

‘~-~-÷ —;;;;-+ -~--

— (43.65192 + 119.0392+ 0.02)2
— 1 43.65192 119.0392 O.O~

Is\ 54. ÷ 77 +—~-—

96 thereforet9~= 2.
(54)

The systematicerror limit for the pressuremeasure-
ment is

B~= [B~1÷B~1÷B~1÷B~1÷B~2÷B~+B~2

+ B~2+B~2+B~2÷B~9÷B~3÷B~3]L~2

or

B9 = ~‘B~+ B~+ B~

B9 = y172.2462
+ 205.593~+ 69.2972

= 277.018Pa (56)

Uncertaintyfor thepressuremeasurementis

U~9= (B9 + t
95

S9),U9~= ~JB~+ (t~S9)2

U~= (277.018+ 2 x 126.790)

= 530.598P U95 = 375.6P
V a (57)

= V0.002
2

+ 0.0282+ o.o2S2
+ 0.0392

= 0.056°K.

= 53 > 30, thereforet
95

= 2.

(58)

(59)

(60)

(61)

B1 = ,5/B~1÷B~1÷B~1+~2

= ~j0.0562+ 0.2782+ 03332 + 0.3782

= 0.578 ~}(
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A reference temperature monitoring system will
provide an excellent source of data for evaluating
both data acquisition and reduction temperature
randomerrors.

Figure 17 depicts a typical setup for measuring
temperaturewith Chromel-Alumelthermocouples.

Standards Laboratory

Interlaboratory Standard

Transfer Standard

Working Standard

Measurement Instrument

Figure 16 — Temperaturemeasurementcalibration hierarchy

Ii

If several calibrated thermocouplesare utilized to
monitorthetemperatureof an icepointbath,statisti-
cally useful datacanbe recordedeachtime measure-
ment data are recorded. Assuming that those

thermocoupledata are recorded and reduced to
engineering units by processesidentical to those
employed for test temperaturemeasurements,a
stockpile of data will be gathered,from which data
acquisitionandreductionerrorsmaybeestimated.

Calibration

Calibration

Calibration

Calibration

Cr Cu

r -I
I I

Ice

TO Point
Bath

L___i

L.i~J

Uniform Temperature
Reference

Figure 17 — Typical thermocouplechannel
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7) Computerresolutionerror

For the purpose of illustration, supposeN calibrated ture data if the temperature of the ice bath is
Chromel-Alumel thermocouplesare employed to continuouslymeasuredwith aworking standardsuch
monitor the ice bath temperatureof a temperature as a calibratedmercury-in-glassthermometer.There
measuringsystemsimilar to that depictedby figure the systematicerror limit is the largest observed
17. If each time measurementdata are recorded, differencebetweenX andthetemperatureindicated
multiple scan recordingsare made for each of the by the working standardacquisitionand reduction
thermocouples,andif a multiple scanaverage(X1~)is
calculatedfor each thermocouple,then the average

process.In this example,it is assumedto be O.56°K,
i.e.,

(Xi) forall recordingsof thejth thermocoupleis

. B~= 0.56°K (66)

Errorsourcesaccountedfor by this methodare:

x = K1 (62)
1) Ice pointbathreferencerandomerror

2) Referenceblock temperaturerandomerror
where K- is the numberof multiple scanrecordings
for the thermocouple.

.

3) Recordingsystemresolutionerror

The grandaverage (X) is computedfor all monitor 4) Recordingsystemelectricalnoiseerror
thermocouplesas

5) Analog-to-digitalconversionerror

N —

~ X3

6) Chromel-Alumel thermocouple millivolt
outputvs. temperaturecurve-fit error

x= N (63)

The experimentalstandarddeviation (Si) for the Severalerrorswhicharenot includedin themonitor-
dataacquisitionandreductionprocessesis then ing systemstatisticsare:

S-=
(64)

-

= 0.094K (assumedfor this example)

These errors are a function of probe design and
environmental conditions. Detailed treatment of
theseerror sourcesis beyondthe scopeof this work.

Thedegreesof freedomassociatedwith S~are The experimentalstandarddeviationfor temperature

N
measurementsin this exampleis

v~= ~(K1-1) (65)
S1 =S~S1+S~ (67)

= 200 (assumedfor this example)
where

Dataacquisitionand reductionsystematicerror urn- S1= calibration hierarchy experimentalstand-
its maybe evaluatedfrom the sameicebathtempera- arddeviation

E~(X8_X1)2
j~1i—i

~(K3-1)
j~1
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S7 = 310.0562+ 0.0942

The degreesof freedomassociatedwith S~are

U~= (0.804 + 2 x 0.11),U95 = + (2 x 0.11)2

When v is less than 30, t95 is determinedfrom a
(68) Student’st tableat thevalueof v. Sincev~is greater

than 30 here,uset95= 2.

A.2.2.3 There arecatalogsof dischargecoefficients
for a variety of venturis,nozzlesandorifices. Cata-
logedvaluesare theresult of a largenumberof actual
calibrationsover a period of many years. Detailed
engineeringcomparisonsmustbe exercisedto ensure
that the flowmeter conforms to one of the groups
testedbeforeusingthetabulatedvaluesfor discharge
coefficientsanderrortolerances.

where

B, =

B1 = calibration hierarchy systematicerror
limits

B1 = dataacquisitionandreductionsystem-
atic errorlimits

Bc = conductionerrorsystematicerrorlimits
(negligiblein this example)

BR = radiation error systematicerror limits
(negligible in this example)

B~ = recovery factor systematicerror limits
(negligible in this example)

B, = V0.5782
+ 0.562

69 To minimize the uncertaintyin the dischargecoeffi-
cient, it shouldbecalibratedusingprimary standards

in a recognizedlaboratory. Such a calibration will
determinea value of Aeff = Ca and the associated
systematicerror limit and experimental standard
deviation.

Whenan independentflowmeter is usedto determine
flowrates during a calibration for C,~dimensional
errorsareeffectivelycalibratedout. However,whenC
is calculatedor taken from a standardreference,
errors in themeasurementof pipe andthroatdiame-
terswill be reflectedassystematicerrorsin the flow
measurement.

Dimensional errors in large venturis, nozzles and
orifices may be negligible. For example,an error
0.001 inch in the throat diameterof a 5 inch critical
flow nozzlewill result in a 0.04% systematicerror in
airflow. However, theseerrors can be significant at
largediameterratios.

A.2.2.4 Non-idealgas behaviorand changesin gas
composition are accountedfor by selectionof the
propervaluesfor compressibilityfactor (Z), molecular
weight (M) and ratio of specific heats (y) for the
specific gas flow beingmeasured.

S1 = data acquisition and reduction experi-
mentalstandarddeviation

= 0.11 ~}(

Uncertaintyfor thetemperaturemeasurementis

U, (B,÷t~5S,)

= (B, 4- t95 S,), U95 = + (t
95

S,)2

= 1.02°K, 0.83°K
— (S~÷S~)2

V
7

— / ~4 ~4

I ‘-ii ~-‘2
—+ —

‘ V
1

V
2

— (0.0562+ 0.0942)2
— I 0.056k ØQ944

53 + 200

= 250 thereforet95 = 2

Systematicerrorlimits for themeasurementsare

(70)

= 0.804°K
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When values of y andZ are evaluatedat the proper
pressureand temperatureconditions, airflow errors
resulting from errors in ‘y andZ will be negligible.

For the specific case of airflow measurement,the
main factor contributingto variationof composition
is the moisturecontentof theair. Though small, the
effectof achangein air densitydue to watervaporon
airflow measurementshouldbe evaluatedin every
measurementprocess.

A.2.2.5 The thermal expansion correction factor
(Fa) corrects for changesin throat areacausedby
changesin flowmetertemperature.

For steels,a 17~Kflowmeter temperaturedifference,
betweenthetimeof atestandthetimeof calibration,
will introducean airflow error of 0.06%if no correc-
tion is made. If flowmeter skin temperature is
determinedto within 3°Kandthe correctionfactor
applied,the resultingerrorin airflow will be negligi-
ble.

A.2.3 Propagation of error to airflow

For an exampleof propagationof errors in airflow
measurementusinga critical-flow venturi,considera
venturi having a throat diameterof 0.554 meters

operatingwith dry air at an upstreamtotal pressure
of 88 126~

aand an upstreamtotal temperatureof
2659°K.

Equation(71) is the flow equationto be analyzed:

icd2
* P1W = —~---CF5p7r~-

____ y+1
( 2 ~7—1 (‘ygM

(p— \y+11 ~ZR (71)

Assume,for this example,that the theoreticaldis-
chargecoefficient (C) has been determinedto be
0.995. Further assumethat the thermal expansion
correctionfactor (Fa) andthe compressibilityfactor
(Z) are equal to 1.0. Table 11 lists nominal values,
systematicerror limits, samplestandarddeviations
and degreesof freedomfor eacherror sourcein the
aboveequation.(To illustrate the uncertaintymeth-
odology, we will assumea samplestandarddeviation
of 0.0005 in additionto a systematicerror of 0.003.)

Note that, in table II, airflow errors resultingfrom
errors in Fa* Z, k, g, M and R are considered
negligible.

Table 11 — Airflow measurementerror sources

Error
source

V

Units
Nominal

value

Systematic
error
limit

Experime~ta1
standard
deviation

Degrees
of

freedom,
V

Uncertainty
U~

P
1

P
5

88 126 217.02 126.79 96 530.60

T
1

K 265.9 0.8 0.11 250 1.02

d m 0.554 2.54X10
5

2.54X10~ 100 7.62X10
5

C 0.995 0.003 O000 5 — 0.003

~a 1.0 — — — —

z 1.0 — — — —

y 1.401 — — — —

g — — — —

M kg/kg-mole 28.95 — — — —

H J/K-kg-mole 8.3 14 — — — —
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Fromequation(71), airflow iscalculatedas

w = 3.142 (0554)2x 0.995 x 1.0

= 52.39 kg/sec.

Taylor’s seriesexpansionof equation(71) with the
assumptions indicatedyields equations(72) and(73)
from which the flow measurementexperimental

standarddeviation and systematicerror limits are
calculated.

s~= w s,l (~)2(~L)2(s)2(~5)2

11 126.790 \2 ( —0.11
= 52.39L ~. 88 126 1 + k 2 x 265.9 1

2 2 1/21 0.0005 \ 1 2 x 0.000025~k 995 1 -‘-‘s 0.554

which resultsin an overall degreesof freedom>30,
and,therefore,avalueoft95of 2.0.

Total airflow uncertaintyis then,

U99 = (B,~+ t95 Sw), U95 = 31B~+ (t
95

S~)2

U~= [0.2416 + 2 x 0.0787]

= 0.40 kg/sec

= 0.8%

= 52.39 ~(0.001 4)2 + (—0.000 2)2 + (~~05o3)2~O.oo0Ø~j2

= 0.0787 kg/sec

B~= w~(~)+(4~)÷(4~)÷(4t)

11 277.02 \2 f —0.804 \2 f 0.003B,, = o239Lk88126 ) ~ 531.8 1 ~

1 0.00005~\ 0.554 1 J

= 52.39 ~/(0.0031)2+ (—0.001 5)2 + (0.003Q)2 + (0.00009)2

0.241 6 kg/seg

By using the Welch-Satterthwaiteformula, the de-
grees of freedom for the combined experimental
standarddeviationis determinedfrom

A.3 Example two — comparative test

A.3. 1 Definition of themeasurementprocess

The objective of a comparativetest is to determine
with the smallestmeasurementuncertaintythe net
effect of adesignchange,suchasanewpart.Thefirst
test is performed with the standard or baseline

(73) configuration. A secondtest, identical to the first
except that the design changeis substitutedin the
baseline configuration, is then carried out. The
difference betweenthe measurementresults of the
two tests is an indication of the effect of the design
change.

FI~W ‘Claw
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j ÷~~-ST

1
) +
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( aw ~ ‘~ ÷ I a’~v ÷
‘~~p•;- Pu ~ ~ TjJ

2 22
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—a—Sd; ÷~-~--sc
4 4
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~ ~c

Vd vC

As long as we only consider the difference or net
effect betweenthe two tests,all the fixed, constant,
systematicerrors will cancelout. The measurement
uncertainty is composedof random errorsonly.

For example, assumewe are testing the effect on the
gasfiowof a centrifugalcompressorfrom achangeto
the inlet inducer. At constant inlet and discharge

4(

2 \0.4012.4012.401 ) 1 1.401x 28.95 \ 88 126
8314 )x~___

2 /
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T )2 + ( 2Sd 2 2 12

~
5

T
1

~4 I 2S4 \4 ( __~c_’i4(~)+( ~ c~
“P

Vp
1

VT, Vd ‘
1

C

(74)

(72)

U95 = 0.29 kg/sec

= 0.55%
(75)
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conditions,andconstantrotationalspeed,will thegas
flow increase?If we testthe compressorwith the old
andnew inducersandtakethe differencein measured
airflow as our defined measurementprocess, we
obtain the smallestuncertainty.All the systematic
errors cancel.Note that, although the comparative
testprovidesanaccurateneteffect,the absolutevalue
(gasfiowwith the newinducer)is notdeterminedo~if
calculated,as in exampleone,it will beinflatedby the
systematicerrors.Also, the small uncertaintyof the
comparative test can be significantly reduced by
repeatingit severaltimes.

A.3.2 Measurement error sources

(see equation (65))

A.3.2.3 The test result is the difference in flow
betweentwo tests.

= WI — W2

All errorsresult from randomerrors in dataacquisi-
tion and datareduction.Systematicerrors areeffec-
tively zero.Randomerrorvaluesareidenticalto those
in exampleone,exceptthatcalibrationrandomerrors
becomesystematicerrorsand,hence,effectivelyzero.

= (BA,,, + 2SAW)

= (0 + 2SAW)

= 31(BAW)2÷(2SAW)
2

= 31o2 + (2SA~)2

A.3.2. 1 Comparativetests shall use the sametest
facility andinstrumentationfor eachtest.All calibra-
tion errorsare systematicandcancelout in takingthe
differencebetweenthetestresults.

B1 = 0

S1 = 0, Sc = 0

SP = S2

= 2SA~ =
2SAW

UAW~ = 2S~\/~ U~,5= 2S~1J~

S ± 52 39 { ( 119.037 \2 1 —0.094 \2= — 88 126 ) ÷~2x265.9 )

/ 0.0005 )2( 0.00005 \,11~’2 V

÷~ 0.995 0.554 J J

S,, = 0.076 2 kg/sec SAW = 0.107 8 kg/sec

UA,,~=0.2155 kg/sec

= 0.41%

= 0.2155 kg/sec

= 0.41%

= 119.039 Pa
(see equation (47)) (seeequation(75))

VP = V
9

= 77

St = S1

= 0.094°K

(see equation (48))

(seeequation (64))

37

A.3.2A Note that the differencesshownin table12
are entirely due to differencesin the measurement
processdefinitions.Thesamefluid flow measurement
systemmight be usedin bothexamples.The compar-
ative testhas the smallestmeasurementuncertainty,
but this uncertainty value does not apply to the
measurementof absolutelevel of fluid flow, only to
thedifference.

V, V
1

= 200

SAW 31S~1÷(—i)2S~2=s,,31~

and

A.3.2.2
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1. 2,3. m Observationpoints

b1,b2,b3,. . b~ Breadth(metres)of segmentassociatedwith theobservationpoint

V d1,d2,d3,. . d~.g Depthof water(metres)at theobservationpoint

Dashedlines Boundaryof segments:oneheavilyoutlined

If x andy are respectivelyhorizontal and vertical coordinatesof all the points in the cross-
section,and A is its total area, then the precisemathematicalexpressionfor ~ the true

volumetricflowrate(discharge)acrossthearea,canbewritten as

Figure 18 — Definition sketchof velocity-areamethod of dischargemeasurement(midsectionmethod)

L~,4 1)5

lnrt!aI
point

T~T~

Explanation
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Example
One—
Facility

Example
Two—
Facility

1. Experimental standard
deviation, kg~/sec (s)

2. Degrees of freedom (v)

3. Systematic error,

kg~/sec (B)

4. Uncertainty, kg~/sec

0.078 7

>30

0.245 7

0.40

0.076 2

>30

0

0.22

Annex B — Examples on estimating uncertainty in

open channel flow measurement

B.1 General

Evaluationof the overall uncertaintyof a flow in an
openchannelwill bedemonstratedby considering(1)
the velocity-areamethod and (2) the weirs method.

The methodof measuringthe flow is such that it is
impractical to eliminate interdependentvariables
from the equationbeforeestimatingflow uncertainty.
Therefore,it involves evaluationof the interdepen-
dentuncertaintiesspecifiedin 7.4. In addition,mea-
surementconditions often make it impossible to
obtain the replicate measurementsneeded for
evaluation of experimental standard deviations.
Thus,it is desirableto expressthe randomerrorsas
well as the systematicerrors as error limits. Under
theseconditions, it also is appropriateto assumethat
all the random error limits are equivalent to two
experimental standarddeviations. Under this as-
sumption,the randomerror limits canbe propagated
with each other by means of the sameroot-sum-
square formulas as the systematicerror limits (see
equations19-22).

B.2 Example one — velocity area method

B.2. 1 The equation for discharge in an open

channel — velocity area
The channel cross-sectionunder considerationis
divided into segmentsby m verticals. The breadth,
depthandmeanvelocity associatedwithanyverticali
are denotedbyb1, d~and V, respectively.(seefigure
18) TheproductQ1 b,d~representsanapproxima-
tion to the discharge(volumetric flow rate) in thei-th
segment.Thesumoverall segments,

39

i-i (78)

Table 12 — Error comparisonsof examplesone
and two Q. = bd.

__________________________________________________________ ___________ 1=1 ‘ i—I ‘ (76)

representsanestimatedor observedvalueof thetotal
discharge.

If x and y are respectivelyhorizontal and vertical
coordinatesof all thepoints in the cross-section,and
A is its total area, then the precisemathematical
expressionfor Q~,the true volumetric flowrate (dis-
charge)acrossthearea,canbewritten as

ffA v(x,y) dx dy (77)

The true dischargeand the observeddischargeare
related by a proportionality factor representingthe
approximationof the integral equation (77) by the
finite sumequation(76), thus:

Q~= Fm Q~0= Fm Z

where

F~= [hA v(x,y) dx dy ] / L~b~d~~]

In practice, Fm can be evaluatedfrom analysis of
measurementsin which m is sufficiently largefor the
effects on Q~0of omitting verticals,in stages,to be
determined.Fm is subject to a randomuncertainty.

It may be convenient in practice to take an Fm
variation with m that is a meanvalue of valuesfor
sectionsof severaldifferent rivers, taken together.
Thenthe actualvariationsof Fm from river to river,
as comparedwith the meanedvariation, will involve
bothsystematicandrandomerrors.

Fm is dependenton the numberof verticalsm, and
tends to unity as m increaseswithout limit. Thus,
equation78 canbewritten approximatelyas

= ~ (b~d~)

t=1 (i9)

with increasingaccuracyasmincreases.

This last form is the onethat is given in Iso 748.
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B.2.2 The overall uncertainty of the flow
determination

It is plausibleto assumethat, at a given m, F andQ~
canbetreatedas independentvariables.

However, the Q1 in principle are not independentof
oneanother,sincethevaluecorrespondingto anyone
vertical will be related to the values of adjacent
verticals.Furthermore,thereis an interdependence
betweenthed~and V, correspondingto any particu-
lar vertical. Thus,applyingtheprinciplesfor combin-
ing randomerrors(seeclause5) anddenotingrandom
error by S, the following expressionfor SQ. the
uncertaintyof Q, can be derivedfrom equation78.

F SQ ~2 — f S~ 12
L Q~J — L Fm J

Zn / Q. \2

i—I ‘~tVO

I Sb. 12 1 Sd~ 12 1 S~12
Lb~i~La~i ~L~]

~Q2 ~ s~+~ [(-~—)sd~~]~(80)

whereS~arisefrom the interdependencebetweenQ1
and and S5~from theinterdependencebetweend1
and ~.

It is convenientto introduce the notation S’ for
relativerandomerror.

Thus Sbjbj is written S~.,SF /Fm is written S’F
and, ne~lectingS~,and Sd~,~uation (80)becom~’s

S’~= St.I- ~ (S’~,~÷S’~,+S’~)

If the relativeerrorsS’bareall nearlyenoughequal,of
value 5’b~’andsimilarly for the S’~and S’d~, then

S’~= S’~÷( S’~+ S’~+ S’~) ~ (Q1/Q~0)2

If the verticalsareso locatedthat Q1 Q~,0/m,then

~

In multi-point velocity-area methods, velocity is
measuredat several points on a vertical, and the
meanvalueis obtainedby graphicalintegrationor as
a weighted average.The latter treatment can be
expressedmathematicallyfor aparticularvalueas

(81)

= ~

where the w~are constantweighting factors. The
suffix i that identifies the particular vertical is
omittedto simplify the symbolism.Thepointsusually
arechosensothat Z w~= 1. This equationcanalso
representthe single-pointmethod, by taking k = 1.

In all cases,the estimates~ socomputedaresubject
to errors.Theseerrorsaredueto improperplacement
of the meterat depthandto deviationsof the actual
velocity profile from thepresumedprofile. The effect
of these errors can be expressedby means of a
multiplicative coefficient P analogousto the coeffi-
cient F~usedfor similar purposesin equation (78).
The sameanalysis that led to equation (80) then
yields the following expressionfor relative random
errorof theaveragevelocity ~:

S~= S’2 + S’2 I (w~v~V p v ~I
k pVp)

in which S’ denotesrelative random error in the
subscriptvariable,v is measuredpoint velocity, and
the ratio of wv-sums expressesthe variability of
weighted~~elocityover thedepthof thevertical,Fora
uniform k-point velocity profile, this ratio would
equal 1/k. For an extremelynon-uniform profile, in
which a single term dominatedall the others, the
ratio would equal 1. The latter value is adopted,at
leastfor small k values,for the sakeof conservatism,
with theresult

Si = S~÷S~

This choicealso helpsto representthe effect of any
unaccounted-forcorrelations among point-velocity
errorsin thesamevertical.

In practice,therandomerror in thevelocity measure-
ment at a point is assumedto be due to a meter-
calibrationrandomrelativeerror,S’~,togetherwith a
streampulsationrandomerror S’e. Thenthe random

(82) relativeerrorforpoint velocitiesis

sc~= s,~+ s’~

The correspondingrandomrelativeerrorfor average
velocity in theverticalis
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Si = S~+ S’~+

B.2.3 Calculation of uncertainty

It is required to calculate the uncertainty in a
current-metergaugingfrom the followingparticulars:

Number of verticals used 20

Exposuretime of current
meterat each point in
the vertical 3 mm

Number of points taken in
the vertical (single
point, two points, etc.) 2

Type of currentmeter rating
(individual or group) individual

Average velocity in measuring
section above 0.3 rn/s

Detailsof procedureare describedin ISO 748.

The randomand systematicerrors arecombinedby
the root-sum-squaremethodas statedin 8.3, i.e., if
S’Q and B’Q are the percentageoverall random and
systematicrelative errors respectively,then U’Q, the
percentageuncertaintyin the currentmetergauging,
is

U’Q = \i( 2S’~)2 + B’~and U’Q~= B’Q + 2S’Q

B.2.3.1 The error equationusedfor evaluatingthe
overallrandomerroris (seeequation(82).)

S’Q ‘I ‘° 1= S;+-(S’~÷S’~÷~’2~
L~~)

where

S’Q is theoverallpercentagerandomerror

S’m is the percentagerandom error due to the
limited numberof verticalsused;

5
b is the percentagerandomerror in measuring

width of segments;

S’d is the percentagerandomerrorin measuring
depthof segments;

S’~ is thepercentagerandomerror in estimating
theaveragevelocity in eachvertical

Zn ± + 5~+ Si
I.,

(seeequation(85))

where

S’~, is the percentageerrordueto limited number
of points takenin the vertical (in thepresent
examplethe two-point methodwasused,i.e.,
at 0.2 and0.8 from the surfacerespectively);

S’~ is the percentageerror of the current meter
rating (in thepresentexamplean individual
rating was usedat velocities of the order of
0.30m/s);

5
’e is the percentageerror due to pulsations

(error due to the random fluctuation of
velocity with time; thetime of exposurein the
presentexamplewasthreeone-minuteread-
ingsof velocity.)

The percentagevaluesof the abovepartial errorsat
the95%confidencelevelaretabulatedin B.2.3.2.

The equationfor calculatingthe overall systematic
erroris

B’Q = ~jBi + B’~+ B’~

where

B’Q is the overall percentagesystematicuncer-
tainty in discharge;

B’b is the percentagesystematic error in the
instrumentmeasuringwidth;

B’~ is the percentagesystematic error in the
instrumentmeasuringdepth;and

B’d is the percentagesystematic error in the
currentmeterratingtank.

The systematicerrors in the current metergauging
are confined to the instrumentsmeasuringwidth,
depth andvelocity andshouldbe restrictedto 1% as
shownin B.2.3.2.

(83)
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Discharge
(Combined)uncertainty,U’Q

95(Combined) uncertainty,U’Q
99

Random error (2S’Q)
Systematicerror (B’Q)

Gaugedhead,h
Breadthof weir, b
Crestheight, P
Coefficientof discharge,Cd
Coefficientof velocity, Cv

(Q) me/s
5.9%
7.4%
5.7%
1.7%

0.67m
lOrn
im
1.163
1.054

= 1.7%

The combination of both random and systematic
errors then gives the overall percentageuncertainty
in discharge,U’Q.

Taylorseriesanalysisof thedischargeequationyields
the following uncertaintyequations,which can be
usedforbothrandomandsystematicerrors:

0,2 ~t2 1’) c~\2cw2
~0~c,+0b~~/h)

0
h

B.2.3.2 The values of the error elementsaffecting
uncertainty in discharge are tabluated below as
percentageerrors at the 95% confidencelevel. The
numerical values are taken from ISO 748. It is
recommended,however, that each user determine
independentlythevaluesof the errorsfor anypartic-
ularmeasurement.

Table 13 — Error elementsaffecting uncertainty in
discharge

UQ Zn ~/(2S’Q)2+ B’~ U’~~= B’Q + 2S’Q

= ~j572
+ 1.72 Zn 1.7+ 57

Zn 5~9% Zn 7,4%

B.2.3.3 The discharge measurementmay be ex-
pressedin thefollowing form:

Error source Units

(2S’)
random

error
limit

(2S95%)

(B’)
percentage
systematic

error
limit

Fm, numberof verticals

b, segmentwidth

d, segmentdepth

numberof profile
points

v~,meter calibration

Ve, meter exposuretime

—

m

m

rn/s

rn/s

rn/s

5.0

0.5

0.5

7.0

2.0

10.0

—

1.0

1.0

—

1.0

—

Then, the overall randomerrorin dischargeis given
by

Uncertainties calculated in accordancewith ISO
5168.

B.3 Example two — weir measurement

&3. 1 Weirdata

It is required to calculate the discharge and the
uncertaintyin dischargefor a triangularprofile weir
giventhefollowing details:(seefigure19)

Zn 2~]~

Zn 4~i~1~(0.25+0.25÷49÷4+100)

Zn 5~7%

The overallsystematicerroris

B’Q Zn ~12 + 12 + 12

Thedischargeequationis

Q Zn (2/3)3/2 CdC~.,j~b h312 (84)

Details of the procedureare describedin ISO 4360.

B.3.2 Uncertainty equations
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and

8.3.3 Evaluation of discharge and uncertainties

The values of the error elements affecting this
problem are tabulatedbelow as error limits at the
95% confidencelevel.Thenumericalvaluesare based
on information givenin ISO 4360.It is recommended,
however,that eachuserdetermineindependentlythe
valuesof the errorsfor anyparticular measurement.
(Seetable14) -

B’ Zn ‘B’2 + B’~+ (3/2)~B’~Q ‘~
(85)

in which S’ and B’ denotepercentageerrors of the
subscriptvariables.

Hejd gaugingsection - -

3 tO4h,,,,~

Slope 1 5 —

Figure 19 — Triangular profile weir

Table 14 — Error elementvalues

Variable Units
Nominal

value

(2S’)
random
error
limit

(2S:95%)

-

(B’)
systematic

error
limit

h

b
.

CdC~

g

m

m

—

m/s
2

0.67

10.00

1.226

9.81

0.003
0.45%

0.

0.5%

0.

0.003
0.45%

0.01
0.1%

1.5%

0.
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Substitutionof the nominal valuesinto the discharge

equationyields

Q = (3/2)3/2 x (1.226) x ~J~Ix 10 x (0.67)3~’2

Zn 11.46m3
1/s

Evaluationof the randomerrorsyields

2S’Q = 1(05)2 + (3/2)2(0.45)~

= 1.65%

- Combining the randomandsystematicerrors by the
root-sum-square(RSS)methodyields

U’Q95 = ~J(2S’~+ B’~ U’Qw Zn B’Q +

= ~(0.84)2+ (1.65)2 = 1.65 + 0.84

= 1.85% Zn 2.49%

Uncertainties calculated in - accordancewith ISO
5168.

Annex C — Small sample methods

C.1 Student’s t.

When the experimentalstandarddeviation is based
on small samples(N � 30), uncertaintyis definedas:

U~D Zn B + t95S

U~8= ~JB2
+ (t95S)2

For these small samples, the interval

— t95S/~N,X + t95S/~’N] will contain the true

unknownaverage,~t, 95% ofthetime. If thesystemat-
ic error is negligible, this statisticalconfidenceinter-
val is the uncertaintyinterval. t95 is the 95thpercen-
tile point for the two-tailedStudentst-distribution.
For small samples,t will be large, and for larger
samplest will be smaller,approaching1.96as a lower
limit. The t-value is a function of the number of
degreesof freedom(v) usedin calculatingS. Since30
degreesof freedom (v) yield a t of 2.05 and infinite
degreesof freedom yield a t of 1.96, an arbitrary
selectionof ~ Zn 2 is usedfor simplicity for valuesof v
from 30 to infinity. Seetable15.

C.2 Degrees of freedom for small samples

In a sample,the numberof degreesof freedom(v) is
thesamplesize,N. Whenastatisticis calculatedfrom
the sample,the degreesof freedom associatedwith
the statistic is reducedby one for every estimated
parameterusedin calculatingthestatistic.Forexam-
ple,from a sampleof sizeN, X is calculatedandhas
N degreesof freedom,andthe experimentalstandard
deviation,5, is calculatedusingequation(1), andhas
N-i degrees of freedom because X is used to
calculateS. In calculatingother statistics,morethan
onedegreeof freedommay be lost. For example, in
calculating the standarderror of a curve fit, the
numberof degreesof freedomwhich are lost is equal
to the numberof estimatedcoefficientsfor the curve,
N —2.

When all random error sourceshave large sample
sizes(i.e.,v~> 30) the calculationof is unnecessary
and 2 is substituted for t95. However, for small
samples,whencombiningexperimentalstandardde-
viationsby theroot-sum-squaremethod(seeequation
(20) for example),the degreesof freedom(v) associ-
atedwith the combinedexperimentalstandarddevia-
tions is calculated using the Welch-Satterthwaite
formula (88).

(86)

(87)

Zn 0.84%

Evaluationof thesystematicerrorsyields

B’Q Zn ~~‘(1.5)~+ (0.lf + (3/2)z(0.45)~

B.3.4 Presentation of results

ThedischargeQ maybereportedasfollows:

Discharge 6m
3

/s
(Combined)uncertainty,U’Q

95
%

(Combined)uncertainty,U’Q~ 2.5%
Randomerror (2S’Q) 0.8%
Systematicerror (B’Q) 1.6%
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(±~S2)2
j—1 i—i

VZn

3 K

j~1 i-i ~ii

Degreesof Degreesof
freedom t

9~
freedom

1 12.706 17
2 4.303 18
3 3.182 19
4 2.776 20
5 2.571 21
6 2.447 22
7 2.365 23
8 2.306 24
9 2.252 25

10 2.228 25
11 2.201 27
12 2.179 28
13 2.160 29
14 2.145
15 2.131
18 2.120

C.3 Propagating the degrees of freedom

The Student’s t value of table 16 to be used in
calculatingthe uncertaintyof the test result (equa-
tions (86) or (87)) is based on Vr, the degreesof
freedom of Sr. If the degreesof freedom of any
measurementstandarddeviationis less than 30, the
degreesof freedomof theresult also maybe less than
30. In suchcases,the following small samplemethod

may be usedto determineVr• This is definedfor the
absoluteexperimentalstandarddeviation according
to the Welch-Satterthwaiteformulaby:

Vr =

±(9, S1, )4

i-I Vp~~ (92)

For example:the degreesof freedomfor the calibra-
tion experimentalstandarddeviation (S1) given by
equation(20), is:

(~)~

~ S~
i-I ~il

________ (S~~÷S~÷S~
1

÷S~1)2 (89)
S4

54 S4
54

_~~!!.+ + + If thetestresult is anaverage,X, basedon a sample

(88) of sizeN,

wherev~1is the degreesof freedomof eachelemental 5- =

experimentalstandarddeviation in the calibration X (90)
process.

As ..,/F.~ is a known constant,the degreesof freedom

Thedegreesof freedomfor the measurementexperi- of S~is thesameasS, i.e.

mentalstandarddeviation (S), as given by equation -

(21) is: =

(91)

Table 15 — Two-tailed student’s “t” table

SMALL SAMPLE METHODS
Degre~esoffreedom<30

tea

2.110
2.101

2.093

2.086
2.080
2.074
2.089

2.064
2.060
2.058
2.052

2.048

2.045
1.98

Two-tailed student’s“I.’ table

t-..-ts ts.-...

~

30 or moreuse2.0
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andfor the relativeexperimentalstandarddeviation
by:

Vr Zn

where

(Sr/r)4

(9~S
1

,../F1)4

Vpr

Sr Zn \/E (0~S~)2

NOTE: The degreesof freedomfor the relativeand -

absoluteexperimentalstandarddeviationsare identi-
cal.

Welch-Satterthwaitedegreesof freedommaycontain
fractional, decimal parts. The fractions should be
droppedor truncatedas roundingdown is conserva-

(93) tive with Student’st, i.e. v = 13.6shouldbe treatedas
VZn 13.0.

Annex D — Outlier treatment

D.1 General

Zn (N~— i)

-J

E

0.

(94)

All datashouldbe inspectedfor spuriousdatapoints
as a continuingcheck on the measurementprocess.
Pointsshouldberejectedbasedon engineeringanaly-
sis of instrumentation,thermodynamics,flow profiles
andpasthistorywith similardata.To easethe burden
of scanninglarge massesof data,computerizedrou-
tines are available to scansteady-statedataandflag
suspectedoutliers.Theflaggedpointsshouldthen be
subjectedto anengineeringanalysis.

The effectof theseoutliers is to increasethe random
error of the system.A testis neededto determineif a
particularpoint from a sampleis an outlier. The test
should consider two types of errors in detecting
outliers:

(1) Rejectinga gooddatapoint
(2) Not rejectingabaddatapoint

and the degreesof freedom of the experimental
standarddeviation(Sr.) of the independentmeasure-
mentsisusuallygivenl~y:

All measurementsystemsmay producespuriousdata
points.Thesepointsmay be causedby temporaryor
intermittent malfunctions of the measurementsys-
tem or they may representactualvariations in the
measurement.Errors of this type should not be
included as part of the uncertaintyof the measure-
ment.Suchpointsaremeaninglessas testdata.They
shouldbe discarded.Figure 20 showsa spuriousdata
point calledan outlier.

Spurious Data Point

x
— — — — — — — — S S — — — — — — — S a

X - x ~ Thandom
_X Error~ X ~ X X X X~X X - Limits

— x ~ — __
S — — a — a S S S S S — a a

Figure 20 — Outlier outsidethe range of acceptabledata
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The probability for rejectinga good point is usually Table 16 — Rejectionvaluesfor Grubbs’ method
set at 5%. This meansthat the oddsof rejectinga
good point are 20 to 1 (or less).The oddswill be
increasedby setting the probability of (1) lower.
However, this practicedecreasesthe probability of
rejectingbaddatapoints.The probabilityof rejecting
a goodpoint will requirethat the rejectedpointsbe
further from the calculatedmeanandfewer baddata
points will be - identified. For large sample sizes,
severalhundredmeasurements,almost all baddata
pointscan b~identified. For small samples(five or
ten),baddatapointsarehardto identify.

One testin common usagefor determiningwhether
spuriousdataareoutliersis Grubbs’Method.

D.2 Grubbs’ method

Consider a sample (X1) of N measurements.The
mean (X) and an experimentalstandarddeviation
(S) arecalculatedby equation(1). Supposethat (X~)~
thej-th observation,is the suspectedoutlier;then,the
absolutestatisticcalculatedis:

I X.-XTflL ~s

Using table 16, a value of T~is obtained for the
samplesize (N) and the 5% significance level (P).
This limits the probabilityof rejectingagoodpoint to
5%. (Theprobabilityof not rejectingabaddatapoint
is not fixed. It will vary asa function of samplesize.

The test for the outlier is to comparethe calculated
T0 with thetableT0.

If T~calculatedis larger thanor equalto T0 table,we
call X3 anoutlier.

If T0 calculatedis smallerthanT~table,we sayX~is
notanoutlier.

Sam
size

pie
N

5%
(1-sided)

Sample
size

5%
(1-sided)

3 - 1.150 20 2.56
4 1.46 21 2.58
5 1.67 22 2.60
6 1.82 23 2.62
7 1.94 24 2.64
8 2.03 25 2.66
9 2.11 30 2.75

10 2.18 35 2.82
11 2.23 40 2.87
12 2.29 45 2.92
13 2.33 50 2.96
14 2.37 60 3.03
15 2.41 70 3.09
16 2.44 80 3.14
17 2.47 90 3.18
18 2.50 100 3.21
19 2.53

26 79 58 24 1 —103 —121 —220
—11 —137 120 124 129 —38 25 —60
—148 —52 —216 —12 —56 89 8 —29
—107 20 9 —40 40 2 10 166
126 —72 179 - 41 127 —35 334 —555

suspectedoutliers are334 and-555(underlined).

To illustrate thecalculationsfor determiningwhether
-555is anoutlierfrom figure 21.

—555 — 1.125
= 140.8136 Zn 3~95

from table16 usingGrubbs’Methodfor N Zn 40 ® 5%
level of significance(one-sided),

T Zn 2.87

Therefore,since3.95> 2.87

(T~,~)> (T,~bl)

—555 is an outlier accordingto Grubbs’test.

D.3 Example

In the followingsampleof 40 values,

Mean (X)
Exp. Std. Dcv.

Sample Size

Zn 1.125
= 140.813 6
Zn 40
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Suspected
outlier

Calculated
Tn

Table Tn
P5

Sample
size
(N)

Experimental
standard

deviation(s)
Mean

X
—555 3.95 2.87 40 140.8 1.125

334 2.91 (stop) 2.86 39 109.6 15.385
—220 2.33 2.85 38 97.5 7.000

aa.

Figure 21 is a normal probability plot of this data
with the suspectedoutliersindicated.In this case,the
engineeringanalysisindicatedthat the—555 and334
readingswereoutliers,agreeingwith the Grubbs’test
results.

Figure 21 — Resultsof outlier tests

Annex E — Statistical uncertainty intervals

It is usually impossibleto determinethe statistical
distribution of the systematicerrors(~)becausethey
are usually subjectivejudgments, i.e. not basedon
data. However, if thereis information to justify a
distribution assumption,it is possibleto userigorous
statisticalmethodsto calculatethe uncertaintyinter-
val. The validity of this assumptionmust be left to
the judgementof the reader. The purposeof this
annexis to describethe methods,given the assump-
tion.

E.1 Assumed systematic error distribution

If it is assumedthat the systematicerrors (B) are
actuallythe maximumpossibleupperandlower limit
of thetrue, unknownsystematicerror (13), andthat 13
is equallyprobableanywherewithin the limits, then
thestandarddeviationof the systematicerrormaybe
determinedby

B
=

As depictedin figure22.

(95)

600

~ ..3~Re1ot~.
Mean 1.125000

- Std. 0ev. 140.8¶3b

- N - 40
Data a Not Normal

at 90 PCI. Confidence

-400

-600

1

~

• G

,
.~—

-800

iFl~l~ti [I
~.01 0.1- 1 lii

Cumulative Frequency . Percent
99.99

F,

48



The validity of this assumptioncannotbe provedor Student’st andthe Welch-Satterthwaiteapproxima-
disproved.It is a matterof judgement. tion will beneededas describedin annexC.

E.2 URSS E.3 UADD

The systematicerror limit of the measurementresult With the additive model of uncertainty,theassumed
maybecalculatedasbefore distribution doesnot affect the answer.The system-

atic error,B, is still determinedas equation(~6)and

B Zn ~ (9.B.)2 there is no advantageto calculating a standard
‘V (96) deviationof systematicerror.

Theexperimentalstandarddeviationofthe systemat- U~D Zn B + t85s
ic errorisestimatedas: (99)

s — B E.4 Monte Carlo exampleB (97)

To illustratethe CentralLimit Theorem,thesumof a
random sample from each of the ten rectangular
distributions with means zero was repeated1000
times. In setsof three, thedistributions hada Zn 0.5,

(98) 1.0, 2.0 respectively,and the tenth, a Zn 4.0. If the
tendencytoward normality and the Monte Carlo
simualtionwerebothperfect

Figure 22 — The
the limit B.

>~

z

assumedfrequencyrectangular distribution of the systematicerror (13) as a function of
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Theuncertaintyis

URSS Zn ~J(1.645S8)2 +

for large samples, where S is the experimental
standarddeviationof therandomerror.

Assumingthereare many sourcesof systematicand
randomerrors,~ay ten or more, the Central Limit
Theoremstatesthat sumsof samplestakenfrom any
distribution(s)will tendtowardnormality.Therefore,
the true error (ö) shouldbe distributedas a normal
distribution with standarddeviation equal to the
root-sum-squareof the systematicandrandomerror
experimentalstandarddeviations.This will be illus-
trated in E.4. If small samplesareusedto estimate
the randomerror experimentalstandarddeviations,

a Zn V3(0.52÷1.02+2.02)+42

= 5.585. -

The averageS for 1000 trials was S Zn 5.671. The
resultsareshown in figure 23. Thebell shapeof the
normal distribution is apparent.A goodness-of-fit
testcould not reject normality at the 90% level of
confidence. .- -

—B i~1EASLTRE~NTSCALE

0260,
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Figure 23 — Distribution of sum of 10 rectangular systematicerrors

Annex F: Uncertainty interval coverage

Introduction

A rigorous calculation of confidence level or the
coverageof the true value by the interval is not
possiblebecausethedistributionsof systematicerror
limits, based on judgement, cannot be rigorously
defined.Monte Carlo simulationof the intervalscan
provide approximatecoverage5basedon assuming

- varioussystematicerrorlimits.

F. 1 Simulation results

As the actualsystematicerror andsystematicerror
limit distributionswill probablyneverbeknown, the
simulationstudieswerebasedon a rangeof assump-
tions. The resultof thesestudiescomparingthe two
intervalsare:

* Coverageas usedhereinis the propOrtion of Monte Carlo trials
where the measurementuncertainty interval containsthe true
value.

50

20.00 25.00 ~

a) U99averagesapproximately99.1%coverage
while U95 provides95.0%basedon system-
atic errorlimits assumedto be95%.

For 99.7% systematic error limits, U99
averages99.7%coverageandU95,97.5%.

b) The ratio of theaverageU99 interval sizeto
U95interval size is 1.35:1.

c) If the systematicerror is negligible, both
intervals provide a 95% statistical confi-
dence(coverage).

d) If the random error is negligible, both
intervals provide 95% or 99.7% depending
on the assumedsystematicerrorlimit size.

25.00.

aIDEAL = 5.585

°Bl—B3 0.5
— a

84
_

86
— 1.0

aB7B9 2.0

c~BlO 4.0

1000 TRIALS

CALC = -0.0075
= 5.67

5.00

0.00

—‘10.00 —~.00 0~00
SUM

5~00 10.00

0260,



AssumptionsandSimulationCasesConsidered

(1) From 3 to 10 errorsources,bothsystemat-
ic andrandom

(2) Systematicerrors distributed both nor-
mally andrectangularly

(3) Randomerrordistributednormally

(4) Systematicerror limits at both 95% and
99.7%for boththenormalandthe rectan-
gulardistributions

(5) Samplestandarddeviationsbasedon sam-
ple sizesfrom 3 to 30

(6) Ratio of randomto systematicerrors at
1/2, 1.0and2.0.

F.2 Non-symmetrical interval

If thereis a non-symmetricalsystematicerror limit,
the uncertainty(U) is no longer symmetricalabout
the measurement.The interval is defined by the
upperlimit of the systematicerror interval (B)~.The
lower limit is defined by the lower limit of the
systematicerror interval(B). (seeclause7.3)

Figure 24 shows the uncertainty(U ) for non-sym-
metricalsystematicerrorlimits. (Seetable17.)

Zn B~+ t95S

U=B_t95S

(100)

(101)

Table 17 — Uncertainty intervals definedby
non-symmetricalsystematicerror limits

B B~ t
95

s,

U~
9

(Lower limit
for U)

U,
(Upper limit

for U)

0 deg K +10 deg K 2 deg K —2 deg K +12 deg K

—3 Kg +13 Kg 2 lb —7 Kg +17 Kg
o 1~a +7 P3 2 P3 —2 ~a

—8 deg K 0 degK 2 deg K —10 deg K +2 deg K
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Measurement

Largest Negative Error.
(B — t95 S)

Uncertainty Interval

(The True Value Should Fall Within This Interval)

Figure 24 — Measurementuncertainty;non-symmetricalsystematicerror
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